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Introduction

La teoria dei nodi è una branca della topologia dedicata allo studio di nodi e
link, ovvero immersioni rispettivamente di una o più 1-sfere in R

3. Due link sono
equivalenti se possono essere trasformati l’uno nell’altro attraverso un’isotopia
ambiente. Il problema fondamentale, quindi, è quello di distinguere due link diversi e
a ciò è dovuta l’introduzione di invarianti, ovvero oggetti algebrici che non cambiano
per link equivalenti.

L’obiettivo di questa tesi è lo studio di tre particolari invarianti: il polinomio
di Alexander, il polinomio di Jones e il polinomio HOMFLY. L’introduzione di
invarianti polinomiali, a partire dal 1923 con quello di Alexander e poi nel 1984
con quello di Jones, ha segnato un grande passo avanti nella classificazione di
nodi e link: tali polinomi, attraverso le formule di skein, hanno la proprietà di
essere “concettualmente facili” da calcolare e risulta ancora più semplice confrontarli.
Quest’ultima osservazione è uno dei motivi principali che ha portato alla sviluppo
del polinomio di Alexander, il quale deriva dal gruppo di un nodo che risulta più
di"cile da comparare.

L’elaborato è quindi strutturato nel modo seguente. Il Capitolo 1 presenta i con-
cetti fondamentali della teoria, introducendo in particolare la nozione di diagramma,
le mosse di Reidemeister e alcuni invarianti che saranno utilizzati nei capitoli suc-
cessivi. Gran parte della tesi è dedicata al Capitolo 2, in cui si è sviluppato il
polinomio di Alexander per nodi attraverso un approccio geometrico. La definizione
si è poi estesa a link orientati, arrivando così ad una relazione cosiddetta di skein che
caratterizza il polinomio. Nel Capitolo 3 si introduce la parentesi di Kau!man con
un approccio combinatorio, la quale viene poi modificata per ottenere il polinomio di
Jones. Questo viene in seguito caratterizzato da una nuova formula di skein. Infine il
Capitolo 4 è dedicato al polinomio HOMFLY, di cui i polinomi precedenti si rivelano
essere un caso particolare.

Knot theory is a branch of topology dedicated to the study of knots and links, which
are embeddings of one or more 1-sphere in R

3 respectively. Two links are equivalent
if they can be related by an ambient isotopy. The fundamental problem of the
theory is that of distinguish di!erent links and from this fact follows the introduction
of invariants, which are algebraic objects that remain unchanged under ambient
isotopies of the link.

The aim of this thesis is the study of three particular invariants: the Alexander
polynomial, the Jones polynomial and the HOMFLY polynomial. The introduction
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of polynomial invariants, starting with the Alexander polynomial in 1923 and then in
1984 with the Jones one, represented a significant breakthrough in the classification
of knots and links: such polynomials have the great advantage of being “conceptually
simply” to compute and they are much more easy to compare. This observation is
one of the main reasons that led to the development of the Alexander polynomial,
which comes from the knot group that is di"cult to compare.

The paper is organised as follows. Chapter 1 presents the fundamental concepts
of the theory, introducing the notion of link diagram, the Reidemeister moves and
some invariants that will be useful in the following chapters. The main part of the
thesis is dedicated to Chapter 2, in which the Alexander polynomial for knots is
developed with a geometric approach. Then we extend the definition to oriented
links, obtaining a so-called skein relation which characterizes the polynomial. In
Chapter 3 we introduce the Kau!man bracket with a combinatorial approach, which
will be then modified in order to obtain the Jones polynomial. This one will be then
characterized by a new skein relation. In conclusion, Chapter 4 is dedicated to the
HOMFLY polynomial, of which the previous polynomials are particular cases.

10



Chapter 1

Fundamental concepts of knot
theory

In this chapter we will give a definition of knot and link, following the line of [Burde
and Zieschang, 2003]. Intuitively, we can think of a knot as a closed curve lying in a
3-dimensional space. If we consider more curves, we obtain a link. It is customary
to define links as living in S

3, for it is compact. Moreover, since S
3 = R

3
→ {↑}, it

is equivalent to considering links in R
3.

We will then elaborate on some of the links’ properties. An explanation of what
it means for two links to be equivalent and how we are able to draw diagrams of
them will be given. We will also introduce the Reidemeister moves, which show us
the fundamental three ways a link diagram can be changed without altering the link
itself. Finally, we will show some examples of link invariants taken from [Rolfsen,
1976].

1.1 Knots and links
Definition 1.1.1. A knot is the image of an embedding h : S1

↓ S
3. More generally,

a link of m components is the image of embeddings of a disjoint union of m circles
into S

3, h :
⊔

m

1 S
1

↓ S
3.

Therefore, a knot is a link of one component. We write K and L to denote a
knot and a link respectively. Sometimes we will refer to a link as the embedding
rather than its image.
Figure 1.1 shows four diagrams of knots and links that will be used in examples
throughout this thesis. From left to right, they are called 31, 3̄1 (the mirror image

of 31, i.e. its reflection through a plane), the Hopf link and 51. We call 31 the left
trefoil, 3̄1 the right trefoil and 51 the cinquefoil. We will later point out how we can
draw these diagrams and how the naming is done.

Let us now define what it means for two links to be equivalent. Before doing so,
we recall the following

Definition 1.1.2. Let us consider X, Y topological spaces and h, h
→ : X ↓ Y

embeddings. A continuous map H : Y ↔ [0,1] ↓ Y is defined to be an ambient

isotopy taking h to h
→ if

11



Fundamental concepts of knot theory

Figure 1.1: From left to right: 31, 3̄1, the Hopf link and 51.

• H(·,0) is the identity map,

• for every fixed t, H(·, t) is a homeomorphism from Y to itself,

• H(h(·),1) = h
→(·).

Definition 1.1.3. Two links L and L
→ are equivalent if there exists an ambient

isotopy between them. We call such equivalence class link type. In the case of knots,
we will talk about knot type.

Figure 1.2 depicts a simple example of equivalent knots. The knot type in the
picture is called unknot and it is denoted with 01.

Figure 1.2: The unknot.

A particular class of links is that of polygonal links, for which every component
is made up of a finite number of consecutive segments in R

3 called edges, with
extremes called vertices. A link which is equivalent to a polygonal one is called
tame, otherwise it is called wild. A famous example of wild knot is the Fox knot in
Figure 1.3.

Since wild links come up with pathological behaviours, this will be the only
reference to this kind of links. From now on, we will omit to specify the adjective
qualifying the link, always implying that a tame one is considered. Finally, we also
mention the following

Theorem 1.1.4. A link parametrized by a function of class C
1

is tame.

A proof can be found in [Crowell and Fox, 1977].

1.2 Reidemeister moves

In depicting knots and links, we consider projections of them as subsets of R3 onto
a plane. Definitions are found in [Rolfsen, 1976] and [Burde and Zieschang, 2003].

12



1.2 – Reidemeister moves

Figure 1.3: The Fox knot.

Definition 1.2.1. Let L be a polygonal link in R
3. Let P be a plane and ω : R3

↓ P

the orthogonal projection. We say that P is regular for L provided that every ω
↑1(x),

x ↗ P , intersects L in 0, 1 or 2 points and, if 2, neither of them is a vertex.

Proposition 1.2.2. Given a link L and a plane P , it is possible to make P regular

for the link by arbitrarily small perturbation of either P or L.

Hence, with regular projections we only need to worry about two points projecting
to the same point. At such double points, called crossings, our convention is to draw
the segment containing points closer to the plane as a broken line and the segment
containing the points further away from the plane as a solid line (see Figure 1.4).

Figure 1.4: A regular projection of the left trefoil.

In a regular projection, we call arc the projection of an arc in the link. After a
regular projection, we can depict the link with smooth rather than polygonal arcs
with an isotopy of the link projection, that is an isotopy of the arcs. In this fashion,
we capture all information about the link in the planar projection with the above
convention about double points, obtaining a link diagram.

Manipulating link diagrams can be a daunting task. The work of Reidemeister and
independently Alexander and Briggs in the 1920s streamlined this task significantly.
The idea was to formalize the procedure of showing that two diagrams represent the
same link and this was achieved by isolating the three moves shown in Figure 1.5,
called Reidemeister moves.

Those moves represent ambient isotopies that take place in a specified region
of the link diagram: inside the region, the diagram looks as in the left-hand side
(right-hand side respectively) of one of the picture in Figure 1.5. After the move, the
region looks as in the right-hand side (or left-hand side) of the same picture, while
outside it everything remains the same.

Definition 1.2.3. We call two link diagrams D and D
→ equivalent if they can be

transformed into the other by a sequence of Reidemeister moves and planar isotopies.

What make the Reidemeister moves so e!ective is the following

13



Fundamental concepts of knot theory

The RI move: ↘↓

The RII move: ↘↓

The RIII move: ↘↓

Figure 1.5: Reidemeister moves.

Theorem 1.2.4. Two links L and L
→

are equivalent if and only if all their diagrams

are equivalent.

A proof can be found in [Burde and Zieschang, 2003]. We can express the
theorem as

{links}
amb. isotopies of R3 ↘↓

{link diagrams}
RI, RII, RIII, planar isotopies of the diagram ,

and it allows us to “define” the notion of link type (and consequently, the notion
of link invariant) as the equivalence class of link diagrams, modulo Reidemeister
moves and planar isotopies of the diagram. For the purpose of studying link type,
the above relation is fundamental because, while the left-hand side is topological,
we can deal with the right-hand side in a combinatorial way.

1.3 Knot and link invariants
In order to prove that two links are equivalent, we can show a step-by-step process
of deformation between the two links. Conversely, it is not a simple problem to show
that two links are not equivalent. It can, however, be proven by means of invariants.
For a set S, we call the map

I : {links} ≃↓ S

an invariant of links if it satisfies I (L) = I (L→) for any two equivalent links L and
L

→. If I is only defined for knots, it is called a knot invariant. We will see some
knot and link invariants that will allow us to distinguish between the various links
in Figure 1.1.

One of the most famous invariants is the crossing number.

Definition 1.3.1. Given a link L, we define the crossing number c(L) of the link as
the minimum number of crossings in any regular projection of the link.

14



1.3 – Knot and link invariants

Crossing number is a link invariant. Restricting our attention to knots, it is easy
to see that the only zero-crossing knot is the unknot, while one and two-crossing
knots do not exist. The only three-crossing knots are the trefoil and its mirror image
and so on. Knot tables employ the crossing number as an ordering scheme: hence
the Rolfsen notation ci, where c refers to the crossing number and i distinguishes
among same crossing number knots. For links of m components, we will write c

m

i
.

The number of prime knots with a given crossing number is of interest. A knot is
prime if it cannot be written as the knot sum of two non-trivial knots. The precise
definition can be found in [Rolfsen, 1976]. The sequence, which ignores mirror
images, starts with the number of knots of crossing number 3 and continues on. The
first terms are

1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 46972, . . .

It is noteworthy that nowadays no one has found a closed form for such sequence.
Figure 1.6 contains pictures of all knots up to seven crossings.

Figure 1.6: Knots up to seven crossings.

Another useful knot invariant is the group of a link.

Definition 1.3.2. The group of link L is defined as the fundamental group of its
complement: ω1(S3

\ L).

Since the link complement is connected, di!erent choices of basepoints yield to
isomorphic groups. For this reason is common use to omit the explicit reference to
the basepoint. An application of van Kampen’s theorem leads to the isomorphism
ω1(S3

\ L) ⇐= ω1(R3
\ L). In addition, since complements of equivalent links are

homeomorphic, their groups are isomorphic. Thus, the group of a link is an invariant.
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Fundamental concepts of knot theory

Contrary to the fundamental group, the integral homology of the link complement
X = S

3
\ L is quite useless, since it depends only on the number of components. In

particular, thanks to Hurewicz theorem,

ω1(X)
[ω1(X), ω1(X)]

⇐= H1(X) ⇐= Z
m

,

where [ω1(X), ω1(X)] is the commutator subgroup of ω1(X). This observation will
be useful in Chapter 2.

Since the homology of X does not give any information about L and in general is
di"cult to deal with the group of a link, we will construct in Chapter 2 some invariants
from ω1(X) which are easier to compare, including the Alexander polynomial.

We want to define now a link invariant which measure how linked up two
components are. This will allow us to distinguish between the Hopf link and the
unlink of two components.

For this purpose, it is useful to introduce the notion of oriented link. This is
simply defined as the image of an embedding of the disjoint union of oriented circles
in S

3. The notion of equivalence has to be adjusted: two oriented links are equivalent
if there exist an ambient isotopy between them which respects the orientation. A
link diagram inherits the orientation of the link.

The Reidemeister moves for oriented diagrams are nothing but the original ones,
with all possible configurations of orientation. A possible set of generating moves is
shown in Figure 1.7. Theorem 1.2.4 implies the same bijection between oriented link
types and oriented diagrams modulo ≃↓RI,≃↓RII,≃≃↓RIII moves and planar isotopies of the
diagram.

The ≃↓RI move:
!!

↘↓
!!

↘↓

!!

The ≃↓RII move:
""

##

↘↓

$$

!!

or

""

##

↘↓
!!

$$

The ≃≃↓RIII move:
%% &&

""

↘↓

%% &&

""

Figure 1.7: Reidemeister moves for oriented diagrams.

As an application, we introduce the linking number as follows. We call the
crossings

''((

and
''((

of an oriented diagram a positive and negative crossing
respectively. For a crossing p, we give the sign ε(p) = ±1 if it is a positive or a
negative one respectively.

Definition 1.3.3. Let us consider a diagram of a two-component oriented link. Call

16



1.3 – Knot and link invariants

the oriented components J and K. The linking number is defined as

lk(J, K) = 1
2

∑

p↓J↔K

ε(p),

where J ⇒ K is the set of crossings of J with K.

Note that we do not count crossings of the same component. Furthermore,

lk(J, K) = lk(K, J),
lk(≃J, K) = ≃ lk(J, K),

where ≃J is J with reverse orientation.

+

+

K

""

J

##

Figure 1.8: Linking number of an oriented Hopf link: lk(J, K) = 1.

Proposition 1.3.4. The linking number is well-defined ( i.e., it does not depends on

the diagram) and is a two-component link invariant.

Proof. We verify that lk is invariant under the ≃↓RI, ≃↓RII and ≃≃↓RIII moves. For the
first move, it does not a!ect both components, so it leaves the linking number
unchanged. For the second move, if it regards di!erent components, we find the
same contribution to the sum, hence we have no change in the linking number.

""

↑
##

+

↘↓

$$

!!

or

↑

""

+

##

↘↓
!!

$$

Finally, considering all possible combination of the two components and once + and
≃ are assigned to each crossing, it is clear that ≃≃↓RIII does not change the linking
number. An example is given in the picture below.

%% &&+ +
""

↘↓

%% &&

+ +
""

This concludes the proof.

With this link invariant, we can see that the unlink of two components is
di!erent from the Hopf link, since they have linking number 0 and 1 respectively
(see Figure 1.8).

We may extend the definition of linking number to 1-cycles.

17



Fundamental concepts of knot theory

Definition 1.3.5. Let x, y be disjoint oriented closed curves in S
3. Then [x], [y] be

1-cycles in and S
3. Choose a 2-chain c ↗ C2(S3) so that x = ϑ(c). Then [c ⇑ y] is a

0-cycle, well-defined up to homology. Since H0(S3) ⇐= Z, [c ⇑ y] corresponds to an
integer, denoted by lk([x], [y]), which we call linking number of [x] and [y].

Proposition 1.3.6. The linking number has the following properties.

• If J, K are oriented knots, than lk([J ], [K]) = lk(J, K).

• Let [x0], [y0], [x1], [y1] be 1-cycles. If there are homotopies x0 ⇓H x1, y0 ⇓G y1
such that

Im(H(·, t)) ⇑ Im(G(·, t)) = ⊋

for all t, then

lk([x0], [y0]) = lk([x1], [y1]).

• The function lk defined above disjoint cycles is a symmetric bilinear form.

A proof can be found in [Rolfsen, 1976].

18



Chapter 2

The Alexander polynomial

A significant part of this thesis is devoted to the Alexander polynomial, first presented
in [Alexander, 1928]. There are di!erent ways to compute this invariant, some
involving algebraic techniques and others with a more geometric or combinatorial
approach.
We will first present a geometric way to acquire the Alexander polynomial specif-
ically for knots, following [Rolfsen, 1976]. Then, we will extend the definition to
oriented links as in [Cromwell, 2004]. Finally, we will give a more combinatorial
characterization of the polynomial (i.e. the Conway polynomial), which will bring
us closer to the Jones one presented in Chapter 3.

Let us consider the complement of a knot: X = S
3
\K. Than X is path-connected,

locally path-connected and semilocally simply connected. From covering theory, if
we take the commutator subgroup C = [ω1(X), ω1(X)] of the knot group, then there
exist a unique covering map p : X↗ ↓ X, up to equivalence of coverings, such that

C = p↘(ω1(X↗)).

Since C is a normal subgroup of the knot group, p is regular. Hence we have

Aut(X↗, p) ⇐=
ω1(X)

p↘(ω1(X↗)) = ω1(X)
C

.

Thanks to Hurewicz theorem, ω1(X)/C ⇐= H1(X). By an observation in Chapter 1,
the first homology group of the knot complement is the infinite cyclic group. Therefore

Aut(X↗, p) ⇐= Z.

This fact clarifies the notation. Since the group of covering automorphisms is the
infinite cyclic one, we call X↗ the infinite cyclic cover of the knot complement.

The theory of coverings gives us the covering space with Z as a group of covering
automorphisms. The following paragraph is dedicated to an explicit geometric
construction of this space.

2.1 The infinite cyclic cover of a knot complement
Let us recall the following

19



The Alexander polynomial

Definition 2.1.1. Let X be a topological space. A subset A ⇔ X is said to be
bicollared if exists a continuous map b : A↔ [≃1,1] ↓ X such that b(a,0) = a, ↖a ↗ A.

From now on, we will call surface a connected 2-manifold (see Appendix A).

Definition 2.1.2. Let L be a link. A Seifert surface for L is a bicollared and
compact surface whose boundary is L. If L has an orientation, the bicollar must
agree with the orientation of the link.

The following theorem provides an algorithm for the construction of a Seifert
surface of a given link.

Theorem 2.1.3 (Seifert algorithm). Any link has a Seifert surface.

Proof. If L is not oriented, choose an orientation for every component of L. Let D

be an oriented link diagram of L. At each crossing in the diagram, we make the
following local change: delete the crossing and reconnect the loose ends in the only
way compatible with the orientation. A modified diagram D↘ is obtained, which is a
set of non-intersecting oriented circles called Seifert circuits.
So D↘ is the boundary of a set of oriented discs in the plane (they inherit the
orientation of the oriented circles). Although discs may be nested, we can make them
disjoint by pushing their interior slightly o! the plane, starting with the outermost
ones and working inward.
We continue by connecting the discs with half-twisted strips at the places where the
crossings used to be. The strips are twisted in such a way that they correspond to the
type of crossing there was before. The resulting surface is bicollared and compact,
but it may occur that it is not connected. In that case, we can join components
with tubes, so that the bicollar agrees with the orientation of L. This concludes the
proof.

≃↓ ≃↓

Figure 2.1: Adding an half-twisted strip to in the neighbourhood of a crossing.

It is important to notice that there could exist di!erent Seifert surfaces for the
same link. Furthermore, Seifert algorithm can give di!erent surfaces, depending on
one’s choice of components’ orientation.

The previous theorem assures that the following definition is well-posed.

Definition 2.1.4. The genus of a link L, denoted with g(L), is the minimum genus
of all Seifert surfaces for L.

The genus is a link invariant. It must be pointed out that minimal surface may
not be unique and that Seifert algorithm does not give necessarily a minimal surface
for the link. The genus has many properties and important consequences in knot
theory. See [Rolfsen, 1976] for further readings.

20



2.1 – The infinite cyclic cover of a knot complement

As an example, we compute a (minimal) Seifert surface of the left trefoil. We
consider the following non-standard projection.

≃↓ ≃↓

The resulting surface is a punctured torus, as it can be seen by the following
manipulation.

≃↓ ≃↓

The surface is minimal because it cannot be of genus 0 (otherwise the trefoil would
be the unknot and we will prove in Chapter 3 that this is not the case). Hence,
g(31) = 1.

Let us now consider the complement of a knot X = S
3

\ K. Let M be a Seifert
surface for K and let b :

→
M ↔ [≃1,1] ↓ S

3 be an open bicollar of
→

M . We define

N = b(
→

M ↔ (≃1,1)) Y = S
3

\ (K → N)
→

M
+ = b(

→
M ↔ {1})

→
M

↑ = b(
→

M ↔ {≃1}).
(2.1)

The space Y , which can be regard as X cut open along M . It has a boundary with
two components, each homeomorphic to

→
M :

ϑY =
→

M
↑

→
→

M
+

.

In order to construct X↗, let us form countably many copies of (Y,
→

M
↑

,
→

M
+),

denoted (Yi,
→

M
↑
i

,
→

M
+
i

) and i ↗ Z. From the disjoint union

X̃ =
⊔

i↓Z

Yi,

we define the space X↗ = X̃/⇐, where ⇐ is the equivalence relation which identify
→

M
↑
i

with
→

M
+
i+1.

Y↑1

→
M

↑
↑1

. . .

⇐

Y0

→
M

+
0

→
M

↑
0

⇐

Y+1

→
M

+
+1

. . .

Figure 2.2: Schematic construction of X→.
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The Alexander polynomial

It is clear that we have a covering map p : X↗ ↓ X. Furthermore, we have a
covering automorphism ϖ : X↗ ↓ X↗ which takes the internal points of Yi to the
corresponding ones in Yi+1 and

→
M

↑
i↑1 ⇐

→
M

+
i

to
→

M
↑
i

⇐
→

M
+
i+1.

Aut(X↗, p) acts transitively on X↗: if en, em ↗ p
↑1(x), with en ↗ Yn and em ↗ Ym,

then ϖ
m↑n(en) = em. With the same argument, ϖ generates Aut(X↗, p): if we

consider another covering automorphism h which takes en ↗ Yn to em ↗ Ym (with
en, em ↗ p

↑1(x)), then h = ϖ
m↑n. In addition, ϖ has infinite order by construction.

This proves that p is regular and Aut(X↗, p) ⇐= Z.

2.2 Defining the Alexander polynomial

Let us consider the first homology group of the infinite cyclic cover: H1(X↗). It
has a natural structure of abelian group, so Z acts as a ring on it. In addition,
Aut(X↗, p) acts as a group. As a consequence, the group ring ! = Z[Aut(X↗, p)]
acts as a ring on H1(X↗) in the following natural way.
Let us fix a generator ϖ of Aut(X↗) (only two choices are possible). For every f ↗ !,

f =
s∑

i=r

ai ϖ
i

↘ r, s ↗ Z with r ↙ s,

we define the product of f with an element ϱ ↗ H1(X↗) by the formula

fϱ =
s∑

i=r

ai ϖ
i

↘(ϱ).

With the previous definition, H1(X↗) is a (left unitary) !-module. ! can be seen as
the ring of Laurent polynomial with integer coe"cients, Z[t, t

↑1], where the variable
t = ϖ↘ corresponds to a “translation” along X↗. Therefore we will write

fϱ =
s∑

i=r

ai t
i
ϱ,

for f =
∑

s

i=r
ai t

i
↗ !.

Definition 2.2.1. Let X↗ the infinite cycling cover of a knot K. We call the
!-module H1(X↗) the Alexander invariant of K.

Definition 2.2.2. Any presentation matrix for the Alexander invariant H1(X↗)
of a knot K is called an Alexander matrix for K. The order ideal in ! is called
the Alexander ideal and any generator ”K is called the Alexander polynomial (see
Appendix C for definitions).

We shall now prove that the previous definition is well-posed, i.e. the Alexander
invariant is finitely presentable as a !-module and that there exists a square Alexander
matrix. Note that ”K is defined up to multiplication by units of !, which are the
monomials ±t

i.
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2.2 – Defining the Alexander polynomial

2.2.1 Seifert matrix
This paragraph is dedicated to the construction of a particular Alexander matrix,
which will give us a proof of the well-posedness of Definition 2.2.2 and a method for
the computation of ”K .

Let K be an oriented knot, M a Seifert surface in S
3 for K. Let b :

→
M ↔ [≃1,1] ↓

S
3 be an bicollar for

→
M , so that it agrees with the orientation of K. Let us take

[x] ↗ H1(
→

M), with x : [0,1] ↓
→

M a representative loop. In addition, we define

x
+ = b(x,1) x

↑ = b(x, ≃1),

which can be seen as the image of x under the shift maps

s
± :

→
M ≃↓

→
M ↔ {±1}.

We note that for every [x], [y] ↗ H1(
→

M), x and y
+ are disjoint closed oriented curves

in S
3 (with orientation induced my the standard orientation of [0,1]). Hence, the

following definition is well-posed.

Definition 2.2.3. We call the function # : H1(
→

M) ↔ H1(
→

M) ↓ Z, defined by

#([x], [y]) = lk(x, y
+),

a Seifert form for K. Thanks to Corollary A.0.7, we can choose a basis e1, . . . , e2g

for the Z-module H1(
→

M) (where g is the genus of M) and define the Seifert matrix

V to be the 2g ↔ 2g integral matrix with entries

Vi,j = #(ei, ej).

The Seifert matrix depends upon the choices of the surface M and the basis ei

(the requirement on K to be oriented avoids the further ambiguity about the choice
of the bicollar). In addition, thanks to Proposition 1.3.6, we have that

#([x], [y]) = lk(x↑
, y

+) = lk(x↑
, y).

This observation will be useful in the next discussion.
Let us compute a Seifert matrix for the left trefoil. We choose a basis for the

Seifert surface found in the previous section as in the picture below.

a

b

The knot is oriented so that the filled area is the positive side of the bicollar, while
the striped one is the negative side. Then the related Seifert matrix is

V =
(

lk(a, a
+) lk(a, b

+)
lk(b, a

+) lk(b, b
+)

)

=
(

1 ≃1
0 1

)

,

as it can be seen, for example, for V1,1 and V1,2 from the picture below.
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a

a
+ a

b
+

Although the Seifert matrix is not a knot invariant, the connection with the
Alexander matrix is given by the following
Theorem 2.2.4. If V is a Seifert matrix for an oriented knot K, then V

T
≃ tV is

an Alexander matrix for K.

Here T denotes the transpose matrix and tV is the matrix V with every entry
multiplied by t. It is clear that the matrix V

T
≃ tV is a 2g ↔ 2g matrix over !. This

proves that the Alexander invariant is finitely presentable as !-module and that
there exists a square Alexander matrix.
An immediate consequence of the theorem is that

”K(t) = det(V T
≃ tV ).

Furthermore, since
#([x], [y]) = lk(x, y

+) = lk(y, x
↑),

V
T is a Seifert matrix for ≃K, which denotes K with the opposite direction. Hence,

”K = ”↑K .

This fact agrees with the definition of the Alexander polynomial, since the infinite
cyclic cover of the knot complement does not require orientation on the knot.

Let us now prove the theorem. Before that, some preparatory lemmata are
needed.
Lemma 2.2.5. Let M be a Seifert surface for a knot K. Then there exists a basis

[a1], . . . , [a2g] for H1(
→

M) as Z-module and a basis [ϱ1], . . . , [ϱ2g] of H1(S3
\ M) as

Z-module such that

lk(ai, ϱj) = ςi,j .

We call {[ϱj ]} the dual basis for {[aj ]}.

Part of the proof. Since
→

M is homeomorphic to a disk with 2g handles, we can
consider the basis [aj ] represented by loops which passes throughout the disk and
one handle. Then we can choose the ϱj in S

3
\ M as in the picture below. It can be

shown that the ϱj form a basis for H1(S3
\ M).

a2a1

ϱ1

ϱ2

a2g↑1 a2g

ϱ2g↑1

ϱ2g
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2.2 – Defining the Alexander polynomial

Let us consider the space Y defined by Equation 2.1. Since Y is homotopy
equivalent to S

3
\ M , we can consider the {[ϱj ]} as generators of H1(Y ). On the

other hand, Y can be seen as a subspace of X↗, identifying Y with Y0 through
the immersion iY : Y φ↓ X↗. Then we have the homology classes {[ϱ̃j ]}, where
ϱ̃j = iY (ϱj).

Lemma 2.2.6. The set {t
i[ϱ̃1], . . . , t

i[ϱ̃2g]}i↓Z generates H1(X↗) as a Z-module.

Therefore, H1(X↗) is generated by [ϱ̃1], . . . , [ϱ̃2g] as !-module.

Proof. Let us define the space U as Y0 with a small neighbourhood of M
↑
0 in Y↑1

and a small neighbourhood of M
+
1 in Y+1, which is an open subset of X↗. Then

U = {ϖ
i(U)}i↓Z is an open cover of X↗.

If we consider a loop ↼ : [0,1] ↓ X↗, then for compactness of the support of the
curve ↼

↘ = ↼([0,1]) there exist integers r, s such that

↼
↘

⇔

s⋃

i=r

ϖ
i(U).

Let us call k = r ≃s the range of ↼. We prove by induction over k that [↼] ↗ H1(X↗)
is a linear combination of the t

i[ϱ̃j ].
If k = 0, then ↼

↘
⇔ ϖ

ı̄(U) for some integer ı̄. Hence, ϖ
↑ı̄(↼↘) ⇔ U and

[ϖ↑ı̄(↼)] =
2g∑

j=1
cj [ϱ̃j ].

If we apply t
ı̄, we obtain

[↼] =
2g∑

j=1
cj t

ı̄[ϱ̃j ].

Suppose now that the proposition is true for loops with range lower than k. We can
suppose that ↼

↘
⇑ ϖ

s(U), ↼
↘

⇑ ϖ
r(U) /= ⊋. Let us define the loops ↼0, ↼↑, ↼+ as in

Figure 2.3.

↼↑

ϖ
r(U)

. . .

ϖ
r+1(U)

. . .

ϖ
s↑1(U)

↼0

ϖ
s(U)

↼+ . . .

Figure 2.3: Division of ↼.

Hence, we have
[↼] = [↼↑] + [↼0] + [↼+],

where ↼↑, ↼0, ↼+ are loops with range lower than k. By induction hypothesis, we
obtain that [↼] is a Z-linear combination of the t

i[ϱ̃j ].
The last part follows from the fact that t

i is a unit in !. This concludes the proof.
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Let us now consider a loop a in
→

M , with M a Seifert surface for an oriented knot.
Then we have the curves a

± in S
3

\ M and, as above, the loops ã
± in X↗. They

can be seen as the images of a under the maps

f
± :

→
M

s
±
##

→
M ↔ {±1} ##

→
M

±
0 ⇔ X↗

a
!

## a
± !

## ã
±

.

Lemma 2.2.7. The Alexander invariant, as a !-module generated by the [ϱ̃j ], has

t[ã+
j

] = [ã↑
j

] with j = 1, . . . ,2g

as defining relations. Hence,

H1(X↗) ⇐=
(
[ϱ̃j ]

∣∣∣ t[ã+
j

] ≃ [ã↑
j

]
)

with j = 1, . . . ,2g.

Proof. Let us recall the open cover U = {ϖ
i(U)}i↓Z of the infinite cyclic cover of K

defined in Lemma 2.2.6. It is convenient to consider a curve $ ↗ X↗ which connects
the pieces ϖ

i(U), such that p($) is a loop in the knot complement X linking K once.
Defining the spaces

V =
( ⋃

i even
ϖ

i(U)
)

→ $ W =
( ⋃

i odd
ϖ

i(U)
)

→ $,

we have that
X↗ =

→
V →

→
W =

( ⋃

i even
ϖ

i(U)
)

→

( ⋃

i odd
ϖ

i(U)
)
.

Thus, (V, W ) is an excision couple for X↗. In addition, the intersection V ⇑ W is
the union of

→
M

↑
i

with a small nighbourhood for each i and the curve $, which is
path-connected. The Mayer-Vietoris sequence in reduced homology is

· · · ## H1(V ⇑ W ) ω
## H1(V ) ∝ H1(W ) ε

## H1(X↗) ## 0,

where the maps
↽ = (iV )↘ ∝ (iW )↘ ⇀ = (iW )↘ ≃ (iV )↘

are induced by the immersions iA : A φ↓ X↗, iB : B φ↓ X↗. The maps are also a
!-homomorphisms, since the immersions commute with ϖ .
From the fact that ⇀ is surjective, it follows that

H1(X↗) ⇐=
H1(V ) ∝ H1(W )

ker(⇀) = H1(V ) ∝ H1(W )
Im(↽) = coker(↽).

This will allow us to find a !-module presentation for the Alexander invariant. Now
H1(V ⇑ W ) is an infinitely generated abelian group,

H1(V ⇑ W ) ⇐= Z ′ t
i[ã↑

j
] ∞ with i ↗ Z, j = 1, . . . ,2g,

since V ⇑ W consists of one copy of
→

M
↑
0 for every power of t (the curve $ does not

a!ect it). On the other hand,

H1(V ) ⇐= Z ′ t
i[ã↑

j
], t

i[ã+
j

], t
i[ϱ̃j ] ∞ with i even, j = 1, . . . ,2g,
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2.2 – Defining the Alexander polynomial

since V consists of one copy of U for every even power of t. For the same reason,

H1(W ) ⇐= Z ′ t
i[ã↑

j
], t

i[ã+
j

], t
i[ϱ̃j ] ∞ with i odd, j = 1, . . . ,2g.

Let us consider a generator t
i[ã↑

j
] of H1(V ⇑ W ). We want to calculate ↽(ti[ã↑

j
]).

Since ↽ commutes with t, it su"ces to evaluate ↽([ã↑
j

]). We note that

(iV )↘([ã↑
j

]) = [ã↑
j

],

since ã
↑
j

↗
→

M
↑
0 ⇔ V , while

(iW )↘([ã↑
j

]) = t[ã+
j

],

since ã
↑
j

= ϖ(ã+
j

) ↗
→

M
+
1 ⇔ W . Hence,

↽(ti[ã↑
j

]) = t
i [ã↑

j
] ∝ t

i+1 [ã+
j

]

and, thanks to the map ⇀, it follows that a Z-module presentation of H1(X↗) is

H1(X↗) ⇐=
Z ′ t

i[ã↑
j

], t
i[ã+

j
], t

i[ϱ̃j ] ∞

Z ′ti+1 [ã+
j

] ≃ ti [ã↑
j

]∞
with i ↗ Z, j = 1, . . . ,2g.

Thanks to Lemma 2.2.6, we can eliminate [ã↑
j

] and [ã+
j

] from the generators:

H1(X↗) ⇐=
Z ′ t

i[ϱ̃j ] ∞

Z ′ti+1 [ã+
j

] ≃ ti [ã↑
j

]∞
with i ↗ Z, j = 1, . . . ,2g.

Finally, as a !-module,

H1(X↗) ⇐=
! ′ [ϱ̃j ] ∞

! ′t [ã+
j

] ≃ [ã↑
j

]∞
=

(
[ϱ̃j ]

∣∣∣ t[ã+
j

] ≃ [ã↑
j

]
)

with j = 1, . . . ,2g.

since t is a unit.

Corollary 2.2.8. The Alexander polynomial is well-defined invariant of oriented

knots.

Proof. Since the Alexander invariant is finitely presentable and has a square presen-
tation matrix, it is well defined. In addition, since the order ideal is an invariant of
H1(X↗), the Alexander polynomial is a knot invariant.

As an example, let us compute a presentation matrix for the Alexander invariant
of the left trefoil. If we choose the basis of the previous example, we obtain

H1(X↗) ⇐=
(
[ϱ̃], [⇁̃]

∣∣∣ t[ã+] ≃ [ã↑], t[b̃+] ≃ [b̃↑]
)
,

where ϱ and ⇁ are dual to a and b.
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a

b

ϱ

⇁

a
+

b
+

As it can be seen from the diagrams,

[ã+] = [ϱ̃] [b̃+] = [⇁̃] ≃ [ϱ̃],

and in the same way
[ã↑] = [ϱ̃] ≃ [⇁̃] [b̃↑] = [⇁̃].

Thus,
H1(X↗) ⇐=

(
[ϱ̃], [⇁̃]

∣∣∣ (t ≃ 1)[ϱ̃] + [⇁̃], (t ≃ 1)[⇁̃] ≃ t[ϱ̃]
)
.

We can calculate now a presentation matrix for H1(X↗):

P =
(

t ≃ 1 1
≃t t ≃ 1

)

.

Therefore the Alexander polynomial of the left trefoil is

”31(t) = det(P ) = t
2

≃ t + 1.

In the previous presentation of H1(X↗), we could also use the first relator to
eliminate [⇁̃] = (1 ≃ t)[ϱ̃]. Finally we obtain

H1(X↗) ⇐=
(
[ϱ̃]

∣∣∣ (t ≃ 1)(1 ≃ t)[ϱ̃] ≃ t[ϱ̃]
)

=
(
[ϱ̃]

∣∣∣ (t2
≃ t + 1)[ϱ̃]

)

⇐=
!

(t2 ≃ t + 1) .

Since the relator is
ρ = (t2

≃ t + 1)[ϱ̃],

we have the presentation matrix P
→ = (t2

≃ t + 1) and the Alexander polynomial of
the left trefoil

”31(t) = t
2

≃ t + 1,

in accordance with what found before.

We are now ready to prove the statement which connects the Seifert matrix to
the Alexander invariant.
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2.2 – Defining the Alexander polynomial

Proof of Theorem 2.2.4. Let M be a bicollared Seifert surface for an oriented knot
K and let V be the Seifert matrix associated to some basis [a1], . . . , [a2g] of H1(

→
M).

Then, thanks to Lemma 2.2.5, we can choose a dual basis [ϱ1], . . . , [ϱ2g] of H1(S3
\M).

The same duality remains true for the corresponding 1-cicles in H1(X↗). Thus, for
every [↼] =

∑
cj [ϱ̃j ] in H1(S3

\ M) we find that

lk(↼, ãi) = lk([↼], [ãi]) = lk
( 2g∑

j=1
cj [ϱ̃j ], [ãi]

)

=
2g∑

j=1
cj lk([ϱ̃j ], [ãi])

=
2g∑

j=1
cj ςi,j = ci.

On the other hand, thanks to Lemma 2.2.6, as a !-module H1(X↗) is generated by
[ϱ̃1], . . . , [ϱ̃2g] with relators

[ã↑
i

] ≃ t [ã+
i

] i = 1, . . . ,2g.

Writing them out in terms of the generators, we obtain

[ã↑
i

] ≃ t [ã+
i

] =
2g∑

j=1
lk(ã↑

i
, ãj) [ϱ̃j ] ≃ t

2g∑

j=1
lk(ã+

i
, ãj) [ϱ̃j ] i = 1, . . . ,2g.

Since lk(ã↑
i

, ãj) = lk(ãj , ã
+
i

) = Vi,j , the equations become

[ã↑
i

] ≃ t [ã+
i

] =
2g∑

j=1

(
Vi,j [ϱ̃j ] ≃ t Vj,i [ϱ̃j ]

)
i = 1, . . . ,2g.

Thus, a presentation matrix for H1(X↗) is precisely V
T

≃ tV and the theorem is
proven.

We can check the formula by computing the Alexander polynomial via the Seifert
matrix of the left trefoil found before. We have

”31(t) = det(V T
≃ tV )

=
∣∣∣∣∣

1 ≃ t +t

≃1 + t 1 ≃ t

∣∣∣∣∣

= t
2

≃ t + 1,

which is the same result as before.

2.2.2 More on the Alexander polynomial
Even though the Alexander polynomial is only defined up to multiplication by ±t

n,
it is a powerful invariant. In this section we will use the notation f(t) .= g(t) to
denote f(t) = ±t

n
g(t). Here are some properties that follow naturally from the

previous theorem.
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Proposition 2.2.9. The Alexander polynomial of a knot K satisfies

”K(1) .= 1.

Proof. Let V be an n ↔ n Seifert matrix for K. We note that, with the usual basis
[aj ], Vi,j = 0 for i /= j or i /= j ± 1. Hence ”K(1) = det(V T

≃ V ) has non-zero
entries only on the i = j ± 1 positions. These correspond to

(V T
≃ V )j±1,j = ±

(
lk(aj+1, a

+
j

) ≃ lk(aj+1, a
+
j

)
)
,

which are ± the algebraic number of intersections of aj and aj+1 in M . Since this
value is 1, we obtain that V

T
≃ V consists of g blocks of the form

(
0 1

≃1 0

)

down the diagonal and zero elsewhere. Thus, ”K(1) .= det(V T
≃ V ) = 1.

In the previous section we have defined the Alexander polynomial for knots,
since the group of a link of m > 1 components has not the infinite cyclic group as
first homology group. Despite of that, Theorem 2.2.4 suggests a way to define the
Alexander polynomial for oriented links. We note that a more symmetric presentation
matrix for the Alexander invariant of a knot is det(t1/2

V ≃ t
↑1/2

V
T ), since V is a

2g ↔ 2g matrix and

det(t1/2
V ≃ t

↑1/2
V

T ) =
(
≃t

↑1/2)2g det(V T
≃ tV )

= (≃t)↑g det(V T
≃ tV ) .= ”K(t).

Let now L be an oriented link, M a Seifert surface for L. We can choose a bicollar
for M so that it agrees with the orientation of the link. We define the Seifert form
# : H1(

→
M) ↔ H1(

→
M) ↓ Z as before by the formula

#([x], [y]) = lk(x, y
+).

Since H1(
→

M) is a finitely generated abelian group, we can find an integral square
matrix V associated to #, called Seifert matrix.

Definition 2.2.10. Let V be a Seifert matrix for an oriented link L. We define the
Conway-normalized Alexander polynomial of L as

”L(t) = det(t1/2
V ≃ t

↑1/2
V

T ).

Note that with this definition ”L ↗ Z[t1/2
, t

↑1/2] and that there is no ambiguity
of multiplication by units. In addition, thanks to the remark above, the definition
reduces to the Alexander polynomial in the case of knots.
However, from the above definition it is not clear whether the Conway-normalized
Alexander polynomial is well-defined (i.e. it does not depend on any choice of the
Seifert surface and of the basis of its first homology group) and that it is an invariant
for oriented links. Nevertheless, this is the case.
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The demonstration proceeds understanding how to relate di!erent Seifert surfaces
of a link, which reveals to be a finite sequence of ambient isotopies and the addition
or removal of tubes, where each addition of a tube is required to preserve the
orientability of the surface. Then, it establishes a relation between the corresponding
Seifert matrices, which comes out to produce the same polynomial.

Definition 2.2.11. Let A be an integral square matrix. An elementary enlargement

of A is a matrix B of the form

B =





ξ1 0

A
...

...
ξn 0

0 · · · 0 0 1
0 · · · 0 0 0




or





0 0

A
...

...
0 0

▷1 · · · ▷n 0 0
0 · · · 0 1 0




,

for some column ξ or row ▷. The matrix A is called an elementary reduction of B.
Two integral square matrices are said to be S-equivalent if they are related by a
sequence of elementary enlargements, reductions and matrix congruences.

Proposition 2.2.12. Let V and U be Seifert matrix related to equivalent links.

Then V and U are S-equivalent.

Here the elementary enlargements and reductions of the Seifert matrix reflects
the addition and removal of tubes in the surface, while the matrix congruence is
simply a change of basis in H1(

→
M). A complete proof of the statement can be found

in [Cromwell, 2004].

Corollary 2.2.13. The Conway-normalized Alexander polynomial is a well-defined

invariant of oriented links.

Proof. It su"ces to show that det(t1/2
V ≃ t

↑1/2
V

T ) is invariant under S-equivalent
matrices.
If V and U are congruent matrices, i.e. there exists an invertible matrix P such
that P

T
V P = U , then, setting x = t

1/2,

det(x U ≃ x
↑1

U
T ) = det

(
x P

T
V P ≃ x

↑1 (P T
V P )T

)

= det
(
P

T (x V ≃ x
↑1

V
T )P

)

= det(P T ) det(x V ≃ x
↑1

V
T ) det(P )

= det(x V ≃ x
↑1

V
T ).

In the last step we used the fact that if P is an invertible integer matrix, then
det(P ) = 1.
Let now U be an elementary enlargement of V of the form

U =





ξ1 0

V
...

...
ξn 0

0 · · · 0 0 1
0 · · · 0 0 0




.
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Then

det(x U ≃ x
↑1

U
T ) =

∣∣∣∣∣∣∣∣∣∣∣∣

x ξ1 0

x V ≃ x
↑1

V
T

...
...

x ξn 0
≃x

↑1
ξ1 · · · ≃x

↑1
ξn 0 x

0 · · · 0 ≃x
↑1 0

∣∣∣∣∣∣∣∣∣∣∣∣

and, expanding the determinant firstly along the last column and secondly along
the last row, we obtain (supposing V of even dimension)

det(x U ≃ x
↑1

U
T ) = ≃x

∣∣∣∣∣∣∣∣∣∣

x ξ1

x V ≃ x
↑1

V
T

...
x ξn

0 · · · 0 ≃x
↑1

∣∣∣∣∣∣∣∣∣∣

= ≃x (≃x
↑1) det(x V ≃ x

↑1
V

T )
= det(x V ≃ x

↑1
V

T ).

The calculations are analogue V is of odd dimension and if V is an elementary
enlargement of the second type.

An immediate consequence of the above definition is a lower bound in the genus
of an oriented link. Let us define the breadth of a Laurent polynomial to be the
di!erence between the highest and lowest exponents with non zero coe"cients. We
note that, setting x = t

1/2, then ”L(x) ↗ Z[x, x
↑1].

Proposition 2.2.14. For every oriented link L of m components and genus g =
g(K), setting x = t

1/2
,

1
2 breadth

(
”L(x)

)
↙ 2g + m ≃ 1.

Proof. Let M be a minimal Seifert surface for L. Then H1(
→

M) has a basis of
d = 2g + m ≃ 1 elements. Therefore, the associated Seifert matrix V is d ↔ d and so
is xV ≃ x

↑1
V

T . Since ”L(x) = det(xV ≃ x
↑1

V
T ), breadth(”L(x)) ↙ 2d.

In the next propositions we will sometimes set x = t
1/2 in order to simplify the

notation.

Proposition 2.2.15. If L is an oriented link of m components, then

”L = ”↑L

”L = (≃1)m↑1”
L̄

,

where ≃L and L̄ are the opposite and the mirror image of L.
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2.2 – Defining the Alexander polynomial

Proof. If V is a Seifert matrix associated to a Seifert surface M for L, then V
T is

a Seifert matrix for ≃L, since the only change is in the sign of the bicollar of M .
Then,

”↑L(t) = det(x V
T

≃ x
↑1

V )
= det

(
(x V ≃ x

↑1
V

T )T
)

= det(x V ≃ x
↑1

V
T ) = ”L(t).

For the second equation, we note that, with the same notation, ≃V is a Seifert
matrix for L̄, since in the calculation of the linking number we have changed the
positive and negative crossings. Then, knowing that V is a (2g+m≃1)↔(2g+m≃1)
matrix,

”
L̄

(t) = det(≃x V + x
↑1

V )
= det

(
≃(x V ≃ x

↑1
V

T )
)

= (≃1)2g+m↑1 det(x V ≃ x
↑1

V
T ) = (≃1)m↑1”L(t).

In particular, the Alexander polynomial cannot distinguish between a knot and
its mirror image.

Proposition 2.2.16. For every oriented link L of m components,

”L(≃t) = (≃1)m↑1”L(t)
”L(t↑1) = (≃1)m↑1”L(t).

Proof. The relations follow from calculations analogue to those of the previous
proposition.

For knots, ignoring the Conway normalization, we can write the second equation
as

”K(t) .= ”K(t↑1).
The relation can be seen as a consequence of the symmetry in the choice of ϖ↘ rather
than ≃ϖ↘ as generator of the infinite cyclic cover.

Corollary 2.2.17. The Alexander polynomial of a knot K satisfies

”K(t) .= c0 + c1(t↑1 + t) + c2(t↑2 + t
2) + · · · ,

with c0 odd.

Proof. By Proposition 2.2.16,

”K(t) .= b0 + b1t + b2t
2 + · · · + bnt

n
,

where bn↑i = ±bi with the same choice of sign for all i.
If n is odd, then ”K(1) = b0 + b1 + b2 + · · · + bn would be even, which contradicts
Proposition 2.2.9. Thus n is even. Now if bn↑i = ≃bi for all i, then bn/2 = ≃bn/2 and
it implies that bn/2 = 0 and so ”K(1) = 0, again a contradiction. Hence bn↑i = bi

and bn/2 is odd, otherwise ”K(1) would be even. Therefore, within multiplication
by units of !, ”K(t) is of the required form.
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2.3 The Conway polynomial

The Seifert surface description and the original definition of the Alexander polynomial
o!er interesting insight, but are generally di"cult routes to compute ”L. In [Conway,
1967] was firstly presented a skein relation, which is a more useful description for
computation.

The main result is the following

Theorem 2.3.1. There exists a unique polynomial invariant

∈ : {oriented links} ↓ Z[z]

satisfying:

(a) the normalization

∈
$$

= 1;

(b) the skein relation
∈L+ ≃ ∈L↑ = z ∈L0 ,

where L+, L↑, L0 are three oriented links di!ering only locally according to the

diagrams below.

L+

&&

''

L↑

&&

''

L0

''

&&

The invariant ∈L is called the Conway polynomial and it is related to the Conway-

normalized Alexander polynomial by

”L(t) = ∈L(t↑1/2
≃ t

1/2).

A proof of a more general result, which includes the existence and uniqueness part
of the theorem, is postponed to Chapter 4. Assuming it to be true, we shall prove
that ”L(t) = ∈L(t↑1/2

≃t
1/2). Thus, it su"ces to prove that the Conway-normalized

Alexander polynomial satisfies the axioms.

Definition 2.3.2. A link L is called splittable if it is separated by a 2-sphere
embedded in S

3. We will write L = L1 ∋ L2.

Lemma 2.3.3. If L is a splittable oriented link, then ”L = 0.

Proof. Let L = L1 ∋ L2, Mi a Seifert surface for Li and Vi the corresponding
Seifert matrix. Then a Seifert surface M for L can be obtained connecting M1
and M2 with a tube. A basis for H1(

→
M) can be obtained taking the union of

the basis of H1(
→

M1) and H1(
→

M2), together with a meridian m of the tube. Since
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2.3 – The Conway polynomial

#([aj ], [m]) = lk(aj , m
+) = 0 for every element in the union of the basis of H1(

→
M1)

and H1(
→

M2), we obtain the Seifert matrix

V =




V1

V2
0



 .

It follows that
”L(t) = det(t↑1/2

V
T

≃ t
1/2

V ) = 0.

Proposition 2.3.4. The Conway-normalized Alexander polynomial satisfies the

skein relation

”L+ ≃ ”L↑ = (t↑1/2
≃ t

1/2) ”L0 .

Proof. Let D+, D↑, D0 be the diagrams related to the skein relation. We have three
cases.

Suppose that D+ is a disconnected diagram. Then D↑ and D0 must also be
disconnected, which implies that L+, L↑, L0 are all splittable links. Hence, thanks
to Lemma 2.3.3, the skein relation holds. The same argument applies if D↑ is
disconnected.

Suppose now that D0 is a disconnected diagram, while D+, D↑ are connected.
The situation for L0 is the one depicted below, were the dashed circles contain the
remaining part of the diagram.

L1 L2

Then L0 is a spittable link, while L+ and L↑ are of the same type:

L1 L2

L+

2ϑ-rotation
≃≃≃≃≃≃≃↓

of L2
L1 L2

L↑

Then the skein relation holds.
Finally, suppose that D+, D↑, D0 are all connected and let M+, M↑, M0 be the

respective Seifert surfaces constructed via the Seifert algorithm. Let [a1], . . . , [an]
be a basis for H1(

→
M0). Each loop ai is also a loop in M±. We can complete to a

basis for H1(
→

M+) with a loop b passing once through the twisted band added in D+
and back to the rest of the surface. The same argument applies to L↑, with a loop
c passing once through the added band analogously. If V0 is the Seifert matrix for
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b

b
+

c

c
+

Figure 2.4: Sign of the crossings for M+ and M↑.

L0 relative to the loops ai, the Seifert matrices for L+ and L↑ relative to the bases
a1, . . . , an, b and a1, . . . , an, c are

V+ =





◁1

V0
...

◁n

01 · · · 0n µ




V↑ =





◁1

V0
...

◁n

01 · · · 0n µ + 1




,

where we have set

0i = lk(b, a
+
i

) = lk(c, a
+
i

)
◁i = lk(ai, b

+) = lk(ai, c
+)

µ = lk(b, b
+) = lk(c, c

+) ≃ 1.

Let us prove that the above relations hold.
By construction, b and c are the same loop, except that b passes through a negatively
oriented half-twisted band and c passes through a positively oriented half-twisted
one. So, the considered linking numbers can only di!er at the local crossing in the
added bend. This proves that

lk(b, a
+
i

) = lk(c, a
+
i

) lk(ai, b
+) = lk(ai, c

+).

Consider now the crossing induced in the bend. The loop b crosses over b
+, so it

contributes with a ≃1/2 to lk(b, b
+). However, c crosses under c

+, adding 1/2 to
lk(c, c

+). This proves that

lk(c, c
+) ≃ lk(b, b

+) = 1.

Setting x = t
1/2 and expanding the determinants det(x V

T
+ ≃x

↑1
V+) and det(x V

T
↑ ≃

x
↑1

V↑) about the last column and subtracting, we note that almost everything
cancels and we obtain the thesis:

”L+ ≃ ”L↑ = µ(x ≃ x
↑1) det(x V

T

0 ≃ x
↑1

V0)
≃ (µ + 1)(x ≃ x

↑1) det(x V
T

0 ≃ x
↑1

V0)
= ≃(x ≃ x

↑1) det(x V
T

0 ≃ x
↑1

V0)
= (x↑1

≃ x)”L0 .
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2.3 – The Conway polynomial

Now, the Alexander polynomial is an invariant for oriented links and (as it can
be immediately verified)

”
$$

= 1.

Furthermore, Theorem 2.3.1 assures that, applying the skein relation, we obtain an
expression of the form

”L(t) =
∑

i↓I

ai(t1/2
≃ t

↑1/2)i
I ⇔ N finite, ai ↗ Z.

Thus, the Alexander polynomial can be write as an integer polynomial in the variable
t
↑1/2

≃ t
1/2 and, with the substitution z = t

↑1/2
≃ t

1/2, we obtain that ∈L(z) = ”(z).
Let us apply the skein relation to compute the Conway polynomial of an oriented

Whitehead link, denoted with 52
1.

1 ≃z

1 ≃z02
1

⇐=

L1 ∋ L2

1 +z

0102
1

where 0m
1 is the unlink of m > 1 components. Hence,

∈52
1

= ∈02
1

≃ z ∈L1≃L2 + (≃z)2
∈02

1
+ z(≃z)2

∈01

= z
3
.

In the middle, we have also computed the Conway polynomial of an oriented Hopf
link 22

1:
∈22

1
= z.

An interesting application of the Conway polynomial is the following
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Proposition 2.3.5. There are infinitely many knot types.

Proof. Let us show by induction that, denoting with K
(n) the oriented knot below,

· · ·

2n crossings

then
∈

K(n)(z) = 1 + nz
2
.

For n = 1, we have the figure-eight knot

1 +z

01 22
1

where 22
1 is the same oriented Hopf link encountered in the previous example. Hence,

since ∈22
1

= z
2
,

∈
K(1) = ∈01 + z ∈22

1
= 1 + z

2
.

Suppose now that ∈
K(n↑1) = 1 + (n ≃ 1)z2.

· · ·

1 +z

· · ·

K
(n↑1)

· · ·

22
1
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2.3 – The Conway polynomial

Therefore

∈
K(n) = ∈

K(n↑1) + z ∈22
1

= 1 + (n ≃ 1)z2 + z
2

= 1 + nz
2
.

Since all polynomials are di!erent, we have that the K
(n) are not equivalent.

39





Chapter 3

The Jones polynomial

In this section we will present the Jones polynomial. Starting with the Kau!man
bracket as in [Kau!man, 1987], then we will modify it in order to achieve an invariant
for oriented links, namely the Jones polynomial.

3.1 The Kau!man bracket

Definition 3.1.1. Let D be a link diagram. We define the Kau!man bracket ′D∞

to be the element of the ring Z[A, B, d] by means of the following axioms.

(i) ′ ∞ = 1.

(ii) ′ ∋ D∞ = d ′D∞, with D /= ⊋.

(iii) It satisfies the skein relation

′ ∞ = A ′ ∞ + B ′ ∞ ,

which is a relation among the Kau!man bracket of diagrams di!ering only
locally as shown.

Note that axiom (iii) is defined looking at the crossing in such a way that
the overpass goes from top-left to bottom-right. There are two such possibilities
and it is possible to switch from one to another by rotating the crossing of an
angle ω. Nevertheless this ambiguity does not matter, since the diagrams on the
right-hand-side of the skein relation are also the same when rotated by an angle of ω.

Rules (ii) and (iii) then imply that the value of ′ · ∞ on a disjoint collection of m

circles is d raised to m ≃ 1:

′ ∋ · · · ∋

  
m times

∞ = d
m↑1

. (3.1)

It is not immediately clear that the bracket is uniquely determined. This problem
is resolved in the following paragraphs, which give us an explicit formula for the
bracket, independent of any choice.
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3.1.1 A state model

Let us label the crossings in an n-crossing diagram D arbitrarily by 1 up to n.

Definition 3.1.2. A state is defined as a function s : {1,2, . . . , n} ↓ {A, B}. We
construct the diagram s from D by smoothing each crossing of D in the way indicated
by Figure 3.1, depending on whether the crossing has been given label A or B by
the function s. So D has 2n di!erent states.

↘≃≃≃≃≃≃≃≃≃
if s(m) = A

m

≃≃≃≃≃≃≃≃≃↓
if s(m) = B

Figure 3.1: Smoothing the m-th crossing of D.

We define ′D|s∞ for a diagram D and one of its state s by the formula

′D|s∞ = A
i
B

j
,

where i = #s
↑1(A) and j = #s

↑1(B).

Proposition 3.1.3. The Kau!man bracket ′D∞ is well-defined by the axioms in

Definition 3.1.1. It is given by the state sum formula

′D∞ =
∑

s

′D|s∞ d
|s|↑1

, (3.2)

where |s| denotes the number of circles in the splitting of s and the sum is over all

possible states of the diagram.

Proof. Applying the skein relation at the crossing labelled as 1, we reduce ′D∞ to
a linear combination of the brackets of two other diagrams, each with crossings
numbered from 2 to n. Applying again the skein relation to each of these diagrams
at the crossing numbered with 2, we obtain a linear combination of four diagrams,
each with crossings numbered from 3 to n. Repeating, we boil down to a linear
combination of 2n brackets of crossingless diagrams, indexed by states s, and each
with a factor ′D|s∞. Finally an |s|-component crossingless diagrams has bracket
d

|s|↑1 for Equation 3.1.
All we have done is fix some ordering for applying the skein relations and introduce
notation so as to write an explicit formula for the result; having done that, we see
that the formula does not involve the chosen ordering of crossings. It is also clear
that if we were to remove circles at earlier stages, we would get the same result. So
we do indeed have a well-defined Kau!man bracket, not depending on the order of
application of skein relations.

As an example, we compute the Kau!man bracket of the standard diagram of
the left trefoil.
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3.1 – The Kau!man bracket

A

B

A

B

A

B

A

B

A

B

A

B

A

B

Therefore,

′ ∞ = A
3
d

2 + 3A
2
Bd + 3AB

2 + B
3
d.

The picture above is an example of skein tree, which allows the computation of the
braket.

3.1.2 Reidemeister moves’ impact
The Kau!man bracket is not a link invariant because it changes under Reidemeister
moves. In this section we will see how it behaves under all three moves and
consequently how to adjust A, B, d to obtain an invariant.

Type moves II and III

Lemma 3.1.4. The following formula holds:

′ ∞ = (ABd + A
2 + B

2) ′ ∞ + AB ′ ∞ .

Hence we have RII invariance for ′ · ∞, i.e. ′ ∞ = ′ ∞ for all diagrams, if

B = A
↑1

and d = ≃(A2 + A
↑2). (3.3)
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Proof. We can see that

′ ∞
(iii)= A ′ ∞ + B ′ ∞

(iii)= A

(
B ′ ∞ + A ′ ∞

)
+ B

(
B ′ ∞ + A ′ ∞

)

(ii)= (ABd + A
2 + B

2) ′ ∞ + AB ′ ∞ .

Lemma 3.1.5. RII invariance for ′ · ∞ implies RIII invariance.

Proof.

′ ∞
(iii)= A ′ ∞ + B ′ ∞

(↘)= A ′ ∞ + B ′ ∞

(iii)= ′ ∞ ,

where in (△) we have used RII invariance.

Thus we see that by choosing B = A
↑1 and d = ≃(A2 + A

↑2), ′D∞ becomes a
Laurent polynomial in A and it is an invariant under moves of type II and III. It is
not invariant under the type I moves, but it behaves as follows.

Type I move

Proposition 3.1.6. With the choices indicated in Equation 3.3, then

′ ∞ = (≃A
3) ′ ∞

′ ∞ = (≃A
↑3) ′ ∞ .

Proof. Let us prove the first equation:

′ ∞
(iii)= A

↑1
′ ∞ + A ′ ∞

(ii)= A
↑1

′ ∞ + A(≃A
2

≃ A
↑2) ′ ∞

= (≃A
3) ′ ∞ .

The second one can be proven with analogous calculations.

From now on, we assume that B and d are chosen as indicated in Equation 3.3.
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3.2 Defining the Jones polynomial
3.2.1 The Jones polynomial via Kau!man bracket
In order to turn the Kau!man bracket into a polynomial invariant, we have to modify
it and its behaviour under type I move. Let us define another diagram function, the
writhe.

Definition 3.2.1. Given a diagram D of an oriented link L, we define the writhe

w(D) as the sum of the signs of the crossings.

The writhe of a knot diagram does not depend on the orientation, for if we
change the orientation of the knot, each crossing preserves its sign: the arrows point
in the opposite direction, but since they do it on both lines, the writhe stays the
same. This is not a general fact for links with more than one component, where
there are several orientations that can be changed.

To obtain an invariant of ambient isotopy for oriented knots and links, we define
a Laurent polynomial fL by the formula

fL = (≃A)↑3w(D)
′D∞ , (3.4)

where D denotes a diagram of L. The bracket is defined on oriented diagrams by
ignoring the orientation.

Theorem 3.2.2. The polynomial fL ↗ Z[A, A
↑1] defined above is an invariant for

oriented links.

Proof. Recall that ′D∞ does not change under ≃↓RII and ≃≃↓RIII by Lemmata 3.1.4
and 3.1.5. If D is changed by a type II move, then the writhe w(D) remains
unchanged, because the two crossings in move II cancel each other out: one of them
is positive and the other is negative depending on the orientation chosen. If D is
then changed by a Reidemeister move III, the writhe again stays the same, since the
number of crossings is preserved and there are the same types of crossings before
and after the move. So fL is an invariant under Reidemeister moves II and III.

Let us now have a look at what happens under type I move. When D is changed,
then the writhe is changed by a +1, if we add a positive kink, or a ≃1, if we get
rid of a positive kink, because the crossing being created or deleted is a positive
one. Let us call D

→ the diagram when an extra positive kink has been added. Then
w(D→) = w(D) + 1 and by Proposition 3.1.6 ′D

→
∞ = (≃A

3) ′D∞, so we have that

(≃A)↑3w(D↓)
′D

→
∞ = (≃A)↑3(w(D)+1)(≃A

3) ′D∞

= (≃A)↑3w(D)
′D∞ .

The calculations are similar if we get rid of a positive kink or if we deal with a
negative kink. This shows that 3.4 is also an invariant under Reidemeister move I.

We can now define the Jones polynomial as follows.

Definition 3.2.3. The Jones polynomial VL of an oriented link L is the Laurent
polynomial in t

1/2, with integer coe"cients, defined by

VL(t) = fL(t↑1/4). (3.5)
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By Theorem 3.2.2, the Jones polynomial is an invariant over oriented links. It
can happen, though, that two di!erent links have the same Jones polynomial, so we
do not have an if-and-only-if statement. Furthermore, since the writhe of a knot
diagram does not depend on the chosen orientation, the Jones polynomial of an
oriented knot does not either.

At first glance, it seems that VL should belong to Z[t1/4
, t

↑1/4], since the substi-
tution A

↑2 = t
1/2 implies A = t

↑1/4, but we can show by induction on the number
n of crossings in a diagram that fL does indeed belong Z[A2

, A
↑2].

As base case, consider a diagram with zero crossings. Then the writhe is 0 and
Equation 3.1 shows that the statement is true for n = 0.
Now, fix a diagram D with n and suppose the statement true for all diagrams with
less crossings. Choose a crossing, say m, that looks like in Figure 3.2a. Let D

→
, D

→→

be the diagrams that are the same as D except for the crossing m, where D
→ looks

like in Figure 3.2b and D
→ like in Figure 3.2c. Then D

→ and D
→→ have n ≃ 1 crossings

and w(D→) = w(D→→) = w(D) ± 1, depending on the sign of the crossing. Let us
suppose that m is a positive crossing. Than w(D→) = w(D→→) = w(D) ≃ 1 an, by
property (iii) of Kau!man bracket

fL = (≃A)↑3w(D)
′D∞

= (≃A)↑3w(D)(A ′D
→
∞ + A

↑1
′D

→→
∞)

= (≃A)↑3(w(D↓)+1)
A ′D

→
∞ + (≃A)↑3(w(D↓↓)+1)

A
↑1

′D
→→

∞

= ≃(≃A)↑2(≃A)↑3w(D↓)
′D

→
∞ ≃ (≃A)↑4(≃A)↑3w(D↓↓)

′D
→→

∞ .

By induction, (≃A)↑3w(D↓)
′D

→
∞ and (≃A)↑3w(D↓↓)

′D
→→

∞ ↗ Z[A2
, A

↑2], then the
statement follows.

(a) (b) (c)

Figure 3.2

3.2.2 A skein relation
We will show now a characterisation of the Jones polynomial via a skein relation.
This definition was actually presented before the one introduced in the previous
paragraph and can be found in [Jones, 1985].

Proposition 3.2.4. There exist a unique invariant of oriented links

V : {oriented links} ↓ Z[t1/2
, t

↑1/2]

satisfying:

(a) the normalization

V
$$

= 1;
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(b) the skein relation:

t
↑1

VL+ ≃ t VL↑ = (t1/2
≃ t

↑1/2) VL0 , (3.6)

whenever L+, L↑ and L0 are three oriented links di!ering only locally according

to the diagrams below.

L+

&&

''

L↑

&&

''

L0

''

&&

Figure 3.3: Skein diagrams.

In addition, V is the Jones polynomial.

Part of the proof. As for the Conway polynomial, we delay to Chapter 4 the proof of
the fact that the axioms uniquely determines a polynomial in Z[t1/2

, t
↑1/2]. Assuming

that, we prove now that the Jones polynomial satisfies the normalization and the
skein relation. By the definition of the Kau!man bracket, we have that

′ $$ ∞ = 1

and w( $$) = 0. Thus,
V
$$

= 1.

For the skein relation, we have again from the Kau!man axioms that

′ ∞ = A ′ ∞ + A
↑1

′ ∞ ,

′ ∞ = A
↑1

′ ∞ + A ′ ∞ .

Hence

A ′ ∞ ≃ A
↑1

′ ∞ = (A2
≃ A

↑2) ′ ∞ .

Since w(L+) = w(L0) + 1, it follows that

fL+ = (≃A)↑3w(L+)
′
&&

''

∞

= (≃A)↑3(w(L0)+1)
′
&&

''

∞

= (≃A)↑3(≃A)↑3w(L0)
′
&&

''

∞ ,

or equivalently
A

4
fL+ = ≃A(≃A

↑3w(L0)) ′
&&

''

∞ .
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Similarly it is possible to prove that

≃A
↑4

fL↑ = A
↑1(≃A

↑3w(L0)) ′
&&

''

∞ .

Adding the two equations, we get

A
4

fL+ ≃ A
↑4

fL↑ = ≃(≃A
↑3w(L0))(A ′

&&

''

∞ ≃ A
↑1

′
&&

''

∞)

= (A↑2
≃ A

2)(≃A
↑3w(L0)) ′

))

**

∞

= (A↑2
≃ A

2) fL0 .

The substitution A
↑2 = t

1/2 concludes the proof.

3.3 Some properties of the Jones polynomial
A first important property of the Jones polynomial is that it can recognises a knot
from its mirror image.

Proposition 3.3.1. Let K̄ denote the mirror image of K. Then

V
K̄

(t) = VK(t↑1).

Proof. Let us prove that
′K̄∞ (A) = ′K∞ (A↑1).

We note that switching all crossings results in the replacement of every appearance
of A by its inverse A

↑1 in the expansion 3.2 of the bracket. This proves the formula.
Since the writhe of a mirror image is the negative of the writhe of the original, the
thesis follows as well.

We can compute now the Jones polynomial of the left trefoil. We have seen that,
with choices 3.3,

′D∞ = ′ ∞ = ≃A
3

≃ A
↑5 + A

7
.

Since we are dealing with the left trefoil, whose crossings are all negative ones, we
have that w(D) = ≃3 and then

V31 = (≃A
↑3w(D)) ′D∞

∣∣∣
A↑2=t1/2

= (≃A)↑3(↑3)(≃A
3

≃ A
↑5 + A

7)
∣∣∣
A↑2=t1/2

= ≃(A2)8 + (A2)6 + (A2)2
∣∣∣
A↑2=t1/2

= ≃t
↑4 + t

↑3 + t
↑1

.

Thanks to Proposition 3.3.1, we have immediately that V3̄1 = ≃t
4 + t

3 + t. Since
V31 /= V3̄1 , we can conclude that the left trefoil is di!erent from the right one.
Furthermore, noting that V01 = 1, we have that the trefoil is di!erent from the
unknot.
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3.3 – Some properties of the Jones polynomial

Proposition 3.3.2. If 0m
1 is the unlink of m components, then for every oriented

link L

VL ≃ 0m
1 (t) = (≃t

1/2
≃ t

↑1/2)m↑1
VL(t).

Proof. Firstly, let us prove that

V0m
1 (t) = (≃t

1/2
≃ t

↑1/2)m↑1
.

We know that the Kau!man bracket of the standard diagram of the unlink of m

components is
′ ∋ · · · ∋ ∞ = (≃A

2
≃ A

↑2)m↑1
.

With the same diagram (and any possible orientation of the unlink)

w( ∋ · · · ∋ ) = 0,

since there are no crossings. Hence, with A
2 = t

1/2, we have the formula.
Let us now prove that

V
L ≃ = ≃(t1/2 + t

↑1/2) VL(t).

Let us fix an oriented diagram D of L. By axiom (ii),

′D ∋ ∞ = ≃(A2
≃ A

↑2) ′D∞ .

On the other hand, D ∋ has the same type of crossings of D. Then

w(D ∋ ) = w(D)

and, with A
2 = t

1/2 and the formula above, we have the thesis.

Lemma 3.3.3 (Unknotting algorithm). For every diagram of a link L of m compo-

nents, we can reverse a finite number of crossing in order to obtain a diagram of the

unlink of m components.

Proof. Let us assign an orientation to the link, order its components and choose
a basepoint in the diagram (di!erent from a crossing) for every component of L.
Starting at the basepoint of the first component and proceeding following the link
orientation, we can change overpasses to underpasses, so that every crossing is first
encountered as an underpass. Continue throughout the basepoints of the second and
all subsequent components in the same way, changing crossings so that every crossing
is first encountered as an underpass. This finite process geometrically separates and
unknots the components, creating an unlink of m components.
We can also see that the number of changes is less or equal to the number of crossing
in the diagram.

Proposition 3.3.4. For every oriented link L of m components,

VL(1) = (≃2)m↑1
.
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Proof. For t = 1, the skein relation becomes

VL+(1) = VL↑(1).

It follows that changing overcrossings to undercrossings or vice versa has no e!ect
on the value of VL(1). Now, we can apply the skein relation to a finite number of
crossing in order to obtain a diagram of the unlink as in the previous lemma. Indeed,
by Proposition 3.3.2

VL(1) = V0m
1 (1) = (≃t

1/2
≃ t

↑1/2)m↑1
∣∣∣
t=1

= (≃2)m↑1
.
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Chapter 4

The HOMFLY polynomial

In the previous chapters we have expressed the Conway and the Jones polynomials
by means of a skein formula. It will now be shown that those are two particular
cases of a more general polynomial invariant in two variables, the so-called HOMFLY
polynomial (or sometimes HOMFLY-PT polynomial, from the initials of its co-
discoverers [Freyd et al., 1985] and [Przytycki and Traczyk, 1987]).

Using the approach of [Lickorish and Millett, 1987], the main result of this
chapter is the following

Theorem 4.0.1. There exists a unique polynomial invariant

P : {oriented links} ↓ Z[l±1
, m

±1],

called the HOMFLY polynomial, satisfying:

(a) the normalization

P
$$

= 1;

(b) the skein relation

l PL+ + l
↑1

PL↑ + m PL0 = 0.

It can be immediately seen that we can recover the Alexander and the Jones
polynomial as

”L(t) = PL

(
i, i (t1/2

≃ t
↑1/2)

)

VL(t) = PL

(
i t

↑1
, ≃i (t1/2

≃ t
↑1/2)

)
,

where i is the formal square root of ≃1.

In order to prove the theorem, we will proceed as follows. Firstly, we will show
that PL can be calculated for every oriented link L, after some choices for the
computation. Secondly, we will prove that the final result is independent of such
choices. In the following, we will employ some nomenclature.

• A link is ordered if an order is given to its components. Any diagram of L

inherits such an order.
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The HOMFLY polynomial

• A link diagram is based if a basepoint (di!erent from a crossing) is specified
for every component.

• The set of oriented ordered based link diagrams with at most n crossings is
denoted by Dn. We set D =


n

Dn.

• An element D ↗ D is said to be ascending if, when traversing the components
of D in their given order and from their basepoints in the direction specified by
the orientation, every crossing is first encountered as an undercrossing. Every
ascending diagram represents an unlink.

With this definitions, Lemma 3.3.3 states that every D ↗ Dn can be modified,
changing overpasses to underpasses, so that the resulting diagram ϱ(D) is an
ascending one. In addition ϱ(D), which is called the standard ascending of D, has
the same number of components and the same number of crossings of the starting
diagram, so that ϱ(D) ↗ Dn.
In order to prove the theorem, and in particular to apply the skein relation, we will
need to specify that the polynomial is evaluated on a particular oriented diagram.
To emphasize this fact, we will write PD, where D is an oriented link diagram. Then
the skein relation will be written as

l PD+ + l
↑1

PD↑ + m PD0 = 0.

The result above gets rid of this ambiguity, since it establishes that equivalent
oriented links possess equal HOMFLY polynomials. Thus, the computation can be
done on every diagram of such a link.

The proof of Theorem 4.0.1 presented here will be given by induction on the
number n of crossings of a diagram. For n = 0 there is nothing to prove. We will
assume now the following
Inductive hypothesis H(n ≃ 1). For each D ↗ Dn↑1 there is an associated
PD ↗ Z[l±1

, m
±1] such that

1. is independent of the choices of ordering of the components and of basepoints;

2. is invariant under oriented Reidemeister (Figure 4.1) moves which do not
increase the number of crossings beyond n ≃ 1;

3. satisfies the skein relation relating diagrams in Dn↑1.

In addition, we require that

4. if D is any ascending diagram of c components, then, setting µ = ≃(l+l
↑1)m↑1,

PD = µ
c↑1

.

From now on, we assume the truth of H(n ≃ 1) and we will define a polynomial
PD with D ↗ Dn which satisfies H(n).
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The HOMFLY polynomial

↑⇐RIa
↘↓

↑⇐RIb
↘↓

↑⇐RIIa
↘↓

or ↑⇐RIIb
↘↓

↑↑⇐RIII
↘↓

Figure 4.1: Oriented Reidemeister moves.

Definition 4.0.2. Let D ↗ Dn \ Dn↑1 with c components. If D is an ascending
diagram, we set

PD = µ
c↑1

.

Otherwise, we can employ the unknotting algorithm together with the skein relation
written in the forms

PD+ = ≃l
↑1

m PD0 ≃ l
↑2

PD↑

PD↑ = ≃lm PD0 ≃ l
2

PD+ ,

applying H(n ≃ 1) to each D0 (with arbitrary choices of orders of components and
of basepoints, since D0 ↗ Dn↑1) and the definition µ

c↑1 for the resulting standard
ascending ϱ(D). In such a way, we obtain an element of Z[l±1

, m
±1].

We shall prove now that, with the above definition, PD satisfies H(n). Let us
denote the ordered components of the link as K1, . . . , Kc and label with natural
numbers 1, . . . , n the crossings, considering the order given by the unknotting
algorithm.

Lemma 4.0.3. If the crossings of D that di!er from those of ϱ(D) are changed in

any sequence to achieve the standard ascending, then the corresponding calculation

using the skein relation yields PD.

Proof. Without loss of generality, we can alter the sequence of unknotting moves
by interchanging the first two crossing switches, which the algorithm requires at,
say, the crossing labelled i and then at the crossing labelled j. Let 1kD and ▷kD be
the same as D, except that the kth crossing is switched in 1kD (from overpass to
underpass) and nullified in ▷kD, with k = i, j. This is nothing but the notation D+,
D↑, D0 with the additional information about what crossing of D we are looking at
and ignoring the sign of the crossing.
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The HOMFLY polynomial

p1

Ki

Kj ≃↓

p2

Ki

Kj

Figure 4.2: Crossing r in the diagrams of D1 and D2, for Ki crossing over Kj .

Since ▷kD ↗ Dn↑1, the choices have no e!ects on PϖkD. Let us denote with εk the
sign of the kth crossing. Applying the skein relation to the standard sequence of
changes D ↓ 1iD ↓ 1j1iD, we obtain

PD = ≃l
ϱim PϖiD ≃ l

2ϱi PςiD

= ≃l
ϱim PϖiD ≃ l

2ϱi

(
≃l

ϱj m PϖjςiD ≃ l
2ϱj PςjςiD

)

= ≃l
ϱim PϖiD + l

2ϱi+ϱj m PϖjςiD + l
2(ϱi+ϱj)

PςjςiD.

On the other hand, with the reverse sequence D ↓ 1jD ↓ 1i1jD, we find the
expression

≃l
ϱj m PϖjD + l

2ϱj+ϱim PϖiςjD + l
2(ϱi+ϱj)

PςiςjD.

Now, note the commutativity of the successive changes 1j1i = 1i1j , thus the last
terms of the two expressions are equal. In addition, with the skein relation of
H(n ≃ 1) for ▷iD and ▷jD,

▷iD = ≃l
ϱj m PϖjϖiD ≃ l

2ϱj PςjϖiD

▷jD = ≃l
ϱim PϖiϖjD ≃ l

2ϱi PςiϖjD.

Since 1j▷i = ▷i1j , 1i▷j = ▷j1i and ▷i▷j = ▷j▷i, substituting these expressions above
we find that the two ways to compute PD are equivalent.
By induction on the value of the di!erence between the number of crossings of D

and that of ϱ(D), we have the thesis.

Referring to the link projection associated to a link diagram, we call segment

any component of the complement of the double points.

Proposition 4.0.4. P is independent of the choice of basepoints.

Proof. It su"ces to show that moving a basepoint from a segment to the following
one (along the orientation of the component) does not a!ect the polynomial.
Suppose that the basepoint lying on a component Ki is moved from p1 to p2, passing
a crossing of Ki with Kj . Let D1 and D2 be the two elements of Dn (up to planar
isotopies of the diagram) that have basepoints on Ki at p1 and p2 respectively and
are otherwise the same. We can distinguish two cases.

• Let i /= j. In this case ϱ(D1) = ϱ(D2) and hence PD1 = PD2 as, by the
previous lemma, the choice of the sequence of crossing changes is irrelevant.
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The HOMFLY polynomial

• Let i = j. In this case ϱ(D1) and ϱ(D2) di!er only at the considered crossing,
say r, since in D2 it is not the first encountered crossing. Let us suppose
that Ki crosses over Kj (see Figure 4.2). For the previous lemma, PD1 can
be computed changing firstly all the other relevant crossings. The resulting
diagram is 1rϱ(D1) and we obtain PD1 = f(Pςrφ(D1)), where f is some function
coming out from recursion. On the other hand, PD2 = f(Pφ(D2)), since we have
applied the skein relation repeatedly in the same order to the same crossings.

Now Pφ(D1) = µ
c↑1 and Pϖrφ(D1) = µ

c, since ▷rϱ(D1) ↗ Dn↑1 and it is an
ascending diagram (every crossing is first encountered as an underpass). By
the definition of P in Dn,

Pςrφ(D1) = ≃l
↑2ϱr Pφ(D1) ≃ l

↑ϱr m Pϖrφ(D1)

= ≃c µ
c↑1

≃ l
↑ϱr m µ

c

= µ
c↑1

(
≃l

↑2ϱr + l
↑ϱr m(l + l

↑1)m↑1
)

= ≃µ
c↑1

(
≃l

↑2ϱr l
↑ϱr+1 + l

↑ϱr↑1
  

=1+l↑2ωr

)

= µ
c↑1

.

Since Pςrφ(D1) = Pφ(D2) = µ
c↑1, substituting them in f we obtain PD1 = PD2 .

Finally, if Ki crosses under Kj , we can repeat the argument considering ϱ(D1)
and 1rϱ(D2).

Proposition 4.0.5. P satisfies the skein formula relating diagrams in Dn.

Proof. The skein formula relates diagrams in Dn if and only if D+ (or equivalently
D↑) are in Dn. Hence, D+, D↑ are in Dn. Then the formula

l PD+ + l
↑1

PD↑ + m PD0 = 0

can always be seen as the first step in the calculation of PD+ or PD↑ (for a certain
component, not necessarily the first one), after that we have moved the basepoint in
an appropriate way.

Proposition 4.0.6. P is invariant under oriented Reidemeister moves which do

not increase the number of crossings beyond n;

Proof.
≃↓
RI moves. Note that for both ≃↓RIa and ≃↓RIb, we can choose an appropriate

basepoint in such a way that the crossings in the left diagram are first encountered
as an underpass. Thus, the definition of P gives the same result.
≃↓
RII moves. In this case we must take into account that arcs in the diagram can
be part of two di!erent components, say Ki and Kj , i ↙ j. Excluding the simplest
cases in which an appropriate choice of basepoint for Ki assures that every crossing
is first encountered as an underpass, we are left with the case below, with i < j.
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↑⇐RIIa
↘↓

Ki

Kj
Ki

Kj

or ↑⇐RIIb
↘↓

Ki

Kj
Ki

Kj

Consider now the ≃↓RIIa move. Let us denote the left diagram with D and the right
one with D

→. We can choose a basepoint on Ki and label the crossings as below.

1

2
Ki

Kj

Then the crossings have signs ε1 = ≃1 and ε2 = ≃1. Computing P we obtain

PD = ≃l
2(

≃l
↑2

Pς2ς1D ≃ l
↑1

m Pϖ2ς1D

)
≃ lm Pϖ1D

= Pς2ς1D + lm Pϖ2ς1D ≃ lm Pϖ1D

= Pς2ς1D + lm
(
Pϖ2ς1D ≃ Pϖ1D

)
.

Now, we can see that in 1211D we can choose a basepoint for Ki so that every
crossing is first encountered as an underpass. Thus, Pς2ς1D = PD↓ . On the other
hand, applying ≃↓RI invariance, we obtain that Pϖ2ς1D = Pϖ1D (see Figure 4.3). Hence,
PD = PD↓ . The same argument applies to ≃↓RIIb.

Ki

Kj

Figure 4.3: From left to right: 1211D with the appropriate basepoint, ▷211D and ▷1D.

≃≃↓
RIII move. Here we have to deal with at most three components of the link, say Ki,
Kj and Kh with i ↙ j ↙ h. Excluding again the cases in which an appropriate choice
of basepoints for Ki and possibly Kj assures that every crossing is first encountered
as an underpass, we are left with the six cases below (we have represented only the
left diagram in the ≃≃↓RIII move).

KiKj

Kh

i < j,
KhKi

Kj
j < h,

KiKj

Kh

,
KiKh

Kj

,
KjKh

Ki

i, j, h not all
the same.

Consider the first case. Let us call D the diagram on left of the ≃≃↓RIII move and D
→

the transformed diagram on the right. We can choose the basepoints on Ki as below.
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The HOMFLY polynomial

KiKj

Kh
D

KiKj

Kh
D

→

Let us consider the central crossing, which must be changed for the unknotting
algorithm. Since it is a positive crossing in both cases, we have

PD = ≃l
↑1

m PϖD ≃ l
↑2

PςD

PD↓ = ≃l
↑1

m PϖD↓ ≃ l
↑2

PςD↓ .

Now ▷D is the same as ▷D
→, up to planar isotopies of the diagram, so PϖD = PϖD↓ .

On the other hand, in 1D we can choose a basepoint in Ki such that all the crossings
in the considered portion of the diagram are first encountered as underpasses. Hence,
we can calculate P of 1D and P of its transformed under ≃≃↓RIII in the same way.
But such a transformed diagram is precisely 1D

→. Thus, PςD = PςD↓ and finally
PD = PD↓ .
The same argument applies to all other cases.

The next results will discuss non-standard ascending diagrams, that is, elements
of D ↗ Dn which are standard ascending of other diagrams with the same orientation
of D but di!erent ordering of the components (and possibly di!erent basepoints).

Lemma 4.0.7. Suppose that D is a non-standard ascending element of Dn. Let e

be a closed 2-cell in the projection plane such that

• e ⇑ D is the union of an arc a in ϑe and a finite number of arcs (to be called

transversals), properly embedded in e,

• no basepoint is in e,

• each transversal crosses a in one point,

• no pair of transversals crosses in more than one point.

Let b = ϑe \ a and let D̂ be the result of substituting b for a in D, with b crossing

over or under each transversal with the same choice as a. Then P
D̂

= PD.

Proof. Let us prove the lemma by induction on the number ◁ of transversals. For
the case ◁ = 0, we have no transversals. This is the case of planar isotopies of the
projection, which do not change the polynomial since they do not a!ect the crossings.
Let us suppose that the proposition is true for (◁ ≃ 1) transversals. Let N and S
denote the endpoints of a.
Among the transversals which meet both a and b, define the distance from N as the
number of endpoints. Then t separates e into two cells. Take the one which contains
N, minus a su"ciently small neighbourhood of a (see Figure 4.4).
Such a cell satisfies the induction hypothesis, with t playing the role of a. Thus, we
can move t toward N without changing the diagram. Now, thanks to Proposition 4.0.6,
we can change the projection with planar isotopies and Reidemeister moves of the
third type along the remaining neighbourhood of a (starting at t ⇑ a), so as to
leave the polynomial unchanged and eliminate the intersection of t and e, as in
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N

S

a b

N

t

Figure 4.4

Figure 4.5. The fact that D is ascending ensures that at each such a move the three
arcs concerned with the move are indeed as required for ≃≃↓RIII. The resulting diagram
is still ascending and has ◁ ≃ 1 transversals. Thus, by induction, we may replace a

with b without changing the polynomial.

N

t

N

t

N

S

Figure 4.5: Moving t outside the cell (left and centre) and D̂ (right).

Finally, we can employ the reverse of the above process, which leaves the polynomial
unchanged and restores t to its original position, obtaining D̂.

Lemma 4.0.8. Suppose that D is a non-standard ascending element of Dn. Let e

be a closed 2-cell in the projection plane such that

• e⇑D is the union of an arc a in ϑe and a finite number of arcs, the transversals,
properly embedded in e,

• no basepoint is in e,

• one transversal, say t, crosses a in two points,

• if b = ϑe \ a, each other transversal crosses a, b and t at one point.

Let D̂ be the result of substituting b for a in D, with b crossing over or under each

transversal with the same choice as a. Then P
D̂

= PD.

Proof. We can choose e
→ a sub-cell of e as in Figure 4.6 so that e

→ contains only
one point of t ⇑ a. We then apply Lemma 4.0.7 in e

→ to move a ⇑ e
→ and finally

Reidemeister moves invariance of P to move the remaining part of a.
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a

t

e
→

b

Figure 4.6

Lemma 4.0.9. If D =
⊔

r

i=1 Di ↗ Dn is disconnected as projection, then

PD = µ
r↑1

r

i=1
PDi .

Proof. If r = 1 there is nothing to prove. Now, if the statement is true for r ≃ 1,
then we can think of D as (

r↑1⊔

i=1
Di

)

∋ Dr

and the thesis follows by induction.

A diagram loop is a simple closed curve in a link projection. Thus, it is the
projection of some sub-arc of the link when the loop starts and ends at a double point
of the projection or the projection of an entire component which has no self-crossing.

Proposition 4.0.10. For every ascending diagram D ↗ Dn with c components,

PD = µ
c↑1

.

Proof. We can suppose that D is connected as a projection, since if D =
⊔

r

1 Di,
then PD = µ

r↑1 
r

1 PDi (with the order on Di induced by that of D) and repeat the
argument on PDi .
Choose an innermost diagram loop of the projection of D. For the hypothesis about
connectedness of D, it is the projection of some sub-arc of the link which starts and
ends at a double point of the projection. Then there are two cases.

• If this loop contains no crossing of the projection (other than the double point
where the loop starts and stops) it can be removed by a RI move without
changing the polynomial, obtaining an ascending diagram of c components
D̃ ↗ Dn↑1. Then, by induction, PD = P

D̃
= µ

c↑1.

• Otherwise, there are transversals across the loop and, if necessary, we can
move the basepoints so that no one lies inside the loop (nor on it, unless the
loop is the projection of a whole component). Thus, within the loop there
is an innermost occurrence of arcs a and t and a cell e as in Lemma 4.0.8.
Hence, a pair of crossings can be removed, changing D to another ascending
projection D̂ with the same polynomial and only (n ≃ 2) crossings. As before
the inductive hypothesis implies that PD = µ

c↑1.
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Proposition 4.0.11. P is independent of the choice of order of the components.

Proof. Let D
→ be the same diagram, but with some other ordering of its components.

Then we can give to the components of ϱ(D→) the original order, obtaining a non-
standard ascending diagram E. Note that E depends upon both D and D

→, but the
crucial fact is that it has the same components’ ordering of D.
Now, we can compute PD with a sequence of skein relations and applications of
Hn↑1, starting from Pφ(D) = µ

c↑1 and changing the crossings in any sequence
(Proposition 4.0.5) from ϱ(D) to D. In particular, the crossings can be changed
following the sequence ϱ(D) ↓ E ↓ D. We can formalise the relations that will
occur through the diagram

Pφ(D)
f

≃≃≃≃↓ PE

g
≃≃≃≃↓ PD.

We know that by definition Pφ(D) = µ
c↑1 and, thanks to the previous proposition,

PE = µ
c↑1. Thus, f is the identity and

PD = g(µc↑1).

On the other hand, we can start from ϱ(D→) and change the crossings in order to
obtain D

→. The sequence of changes ϱ(D→) ↓ D
→ is nothing but that of E ↓ D.

Thus, PD↓ = g(Pφ(D↓)) = g(µc↑1) (with the same function g as before) and finally

PD = PD↓ .

In conclusion, we can prove the main result of the chapter.

Proof of Theorem 4.0.1. As a consequence of the above propositions, we have proved
H(n). Thus, by induction

P : D ↓ Z[l±1
, m

±1]

is well-defined and is an invariant of the equivalence class of the oriented links, since
every oriented link has a projection in some Dn ⇔ D (after any choice of ordering
of the components and basepoints), any two projections of equivalent links are in
some Dn, and are equivalent by a finite sequence of Reidemeister moves that does
not increase the number of crossings beyond a certain number n0 of crossings. In
addition, thanks to Propositions 4.0.10 and 4.0.5, P satisfies normalisation condition
and the skein relation.

Suppose now that there is another such a function Q, which is di!erent from P.
Then there exists an oriented link L with minimal crossing number n (▽ 3) such
that PL /= QL. Applying the skein relation, we can express both PL and QL as the
same Z[l±1

, m
±1]-linear combination of polynomials of diagrams in Dn↑1 and an

unlink. But P = Q on Dn↑1 (since L is minimal in the crossing number) and, as it
can be easily seen from the axioms, both P and Q agree on unlinks. Thus, we have
reached a contradiction.
This concludes the proof.
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The HOMFLY polynomial

Let us apply the algorithm to compute the HOMFLY polynomial of an oriented
Borromean link, denoted with 63

1. We will write p1, p2, . . . for the ordered basepoints.

p1
p2

p3

↑l
↑2 ↑l

↑1
m

52
1

↑l
2 ↑lm

02
103

1

Here 52
1 an oriented Whitehead link. Then we have

P63
1

= P03
1

+ l
↑1

m P02
1

≃ l
↑1

m P52
1

= µ
2 + l

↑1
mµ ≃ l

↑1
m P52

1
.

With analogue calculations, one can find the HOMFLY polynomial of 52
1.

q1

q2↑l
2 ↑lm

r1

r2

r3

↑l
↑2 ↑l

↑1
m02

1

⇐=

L1 ∋ L2

s1

s2

↑l
↑2 ↑l

↑1
m

0102
1
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The HOMFLY polynomial

Here, L1 ∋ L2 is the union of an unknot and an oriented Hopf link 22
1. In the above

calculation, we have also found that

P22
1

= ≃l
↑2

P02
1

≃ l
↑1

m P01

= ≃l
↑2

µ ≃ l
↑1

m.

Thus, thanks to Lemma 4.0.9,

PL1≃L2 = µP01P22
1

= ≃l
↑2

µ
2

≃ l
↑1

mµ.

and then

P52
1

= ≃l
2

P02
1

+ l
↑1

m PL1≃L2 ≃ l
↑2

m
2

P02
1

≃ l
↑1

m
3

P01

= ≃l
2
µ ≃ l

↑2
m

2
µ ≃ l

↑3
mµ

2
≃ l

↑2
m

2
µ ≃ l

↑1
m

3

= ≃l
2
µ ≃ 2l

↑2
m

2
µ ≃ l

↑3
mµ

2
≃ l

↑1
m

3
.

Finally,

P63
1

= µ
2 + l

↑1
mµ ≃ l

↑1
m (≃l

2
µ ≃ 2l

↑2
m

2
µ ≃ l

↑3
mµ

2
≃ l

↑1
m

3)

= (1 + l
↑4

m
2)µ2 + (l↑1

m + lm + 2l
↑3

m
3)µ + l

↑2
m

4
.
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Chapter 5

Conclusions

The key question in knot theory is to tell whether two given knots or links are
equivalent or not.

The Alexander polynomial turned out to be a very useful invariant. It has a long
history and there are several ways to approach it. The viewpoint of homology theory
was taken in this thesis. This resulted not only in a quite complex definition for the
polynomial, but also in nice properties. One of the most important consequences is
that the breadth of the Alexander polynomial for a knot gives a lower bound for the
genus of the knot. Further, the Alexander polynomial can distinguish prime knots
up to crossing number eight, excluding mirror images. Furthermore, the geometrical
meaning of the variable t is clear: it is a translation automorphism of the infinite
cycling cover of the knot complement.

The Alexander polynomial also has a downside. Unlike the Jones polynomial,
it cannot distinguish between a knot and its mirror image. There turn out to
be infinitely many non-trivial knots with Alexander polynomial equal to one (see
[Rolfsen, 1976]). Furthermore the Alexander polynomial is only defined up to
multiplication with a unit ±t

i. This gives rise to a Conway-normalized version.
The latter has the advantage that a skein relation can be deduced for it. Although
conceptually easy, the skein relation is computationally disadvantageous, since there
exist algorithms involving an algebraic approach which run in polynomial time.

The Jones polynomial turned out to be even more powerful than the Alexander
one in distinguishing knots. It distinguishes knots from their mirror images and
there exists a skein relation for this polynomial. A negative result for computational
complexity is that he calculation of the Jones polynomial is expected to be an
exponential process (see [Welsh, 1993] for a more precise statement). In addition,
prime knots up to nine crossing number have distinct Jones polynomials.

However, a full understanding of the polynomial is still missing. Until now, there
is no geometrical construction of the polynomial via the fundamental group, the
homology groups and covering spaces as for the Alexander one. Nevertheless, a 3-
dimensional understanding of the Jones polynomial was discovered in [Witten, 1989]
in relation to a 2+1 dimensional topological quantum field theory. Another unsolved
question is whether the Jones polynomial detects unknottedness (see [Andersen et al.,
2002]), while there exist infinite families of links with more than one component
with trivial Jones polynomial.
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Conclusions

Open questions for the HOMFLY polynomial are quite the same as those for
the Jones polynomial. In particular, we still miss a pure 3-dimensional definition of
the invariant and it is unknown whether there exist non-trivial knots or links with
HOMFLY equal to one.

In conclusion, it can be said that knot theory is a very promising field. It has its
roots in mathematics, but it has also many important applications in theoretical
physics, chemistry and biology. To mention just few examples, it has applications
in topological quantum field theory, statistical mechanics and DNA recombination.
The interplay between these di!erent fields through knot theory is fascinating.

There are still many unsolved questions, which remain a great challenge for
future generations of mathematicians.
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Appendix A

Classification of compact
surfaces

In this section, we will give a summary description of compact surfaces’ classification.
See [Munkres, 2000] and [Massey, 1991] as a reference.

Definition A.0.1. A 2-manifold is an Hausdor!, first-countable space X such that
each point x ↗ X has a neighbourhood homeomorphic with an open set of R2. We
call surface a connected 2-manifold.
A 2-manifold with boundary is an Hausdor!, first-countable space Y such that each
point y ↗ Y has a neighbourhood homeomorphic with an open set of R

2 or H
2,

where H
2 = { (y1, y2) ↗ R

2
| y2 ▽ 0 }. The boundary of Y , denoted with ϑY , consist

of those points y not having a neighbourhood homeomorphic with an open set of R2.
We call surface with boundary a connected 2-manifold with boundary.

Definition A.0.2. A compact surface X is orientable if H2(X) /= 0. A compact
surface with boundary Y is orientable if H2(Y, ϑY ) /= 0.

Definition A.0.3. Let X1, X2 be surfaces, ei a closed 2-cells in Xi. Let X
→
i

= Xi \
→
ei

and h : ϑe1 ↓ ϑe2 a homeomorphism. We define the connected sum of X1 and X2
as the space X1#X2 obtained from X

→
1 ∋ X

→
2 identifying all point x ↗ ϑe1 with h(x).

It can be shown that the connected sum is well-defined, i.e. it does not depend
on any choice.

Theorem A.0.4 (Classification of compact surfaces). Every compact surface X is

homeomorphic with one of the following:

• F0 = S
2

or the connected sum of g tori Fg = T
2# . . . #T

2
, if X is orientable;

• the connected sum of g projective real planes Ng = RP
2# . . . #RP

2
, if X is

non-orientable.

The value g is called the genus of X.

Lemma A.0.5. Let X be a surface, e1, . . . , ek a collection of disjoint open 2-cells in

X with homeomorphisms hi : B
2

↓ ei. Let ε = 1/2 and Bϱ the open 2-ball of radius

ε. Then Y = X \


hi(Bϱ) is a surface with boundary and ϑY has k components. Y

is called X-with-k-holes. If k = 1, Y is called a punctured surface.
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Classification of compact surfaces

Figure A.1: Compact orientable surfaces.

Theorem A.0.6. Every compact surface with boundary Y , such that ϑY has k

components, is homeomorphic to a surface of the form X-with-k-holes, where X is a

compact surface.

The theorem allows us to define the genus of Y as the genus of the compact
surface X. In the particular case of punctured orientable surfaces, we have the
following characterization.

Proposition A.0.7. Every compact orientable surface with boundary Y with genus

g and k boundary components is homeomorphic to a disk with g pairs of handles

and k ≃ 1 single handles as in Figure A.2.

Figure A.2: A compact orientable surface with boundary.

Corollary A.0.8. If Y is a compact orientable surface with boundary with genus g

and k boundary components, then there is a deformation retraction r :
2g+k↑1

1 S
1

↓
→
Y . Hence,

H1(
→
Y ) ⇐= Z

2g+k↑1
.

A basis for H1(
→
Y ) consists of 2g + k ≃ 1 loops which pass through the disk and one

handle.
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Appendix B

Convering spaces

In this section, we will give some results about covering spaces, following the line of
[Munkres, 2000].

Let us consider B, E topological spaces.

Definition B.0.1. Let p : E ↓ B be a surjective continuous map. An open set
U ↗ B is called evenly covered if

p
↑1(U) =

⊔

φ↓J

Vφ,

where Vφ is an open set in E and p|Vε is an homeomorphism with its image, ↖ϱ ↗ J .
The map p is called a covering map of B if every b ↗ B has an evenly covered
neighbourhood U of b. We call E the covering space and p

↑1(b) the fibre of b.

Definition B.0.2. Let X be a topological space, p : E ↓ B be a covering map and
f : X ↓ B continuous. A continuous map f̃ : X ↓ E such that f = p ̸ f̃ is called a
lift of f . In other terms, the following diagram commutes.

E

p

!!

X
f

##

f̃

++

B

Lemma B.0.3. If X is a connected space and f : X ↓ B lifts to two maps

f̃ , f̃
→ : X ↓ E, then { x ↗ X | f̃(x) = f̃

→(x) } is either empty or all of X.

Path lifting lemma B.0.4. Let p : (E, e0) ↓ (B, b0) be a covering map, f : [0,1] ↓

B a path with f(0) = b0. Then there exists a unique lift f̃ : [0,1] ↓ E of f such that
f̃(0) = e0.

Homotopy of paths lemma B.0.5. Let p : (E, e0) ↓ (B, b0) be a covering
map, F : [0,1]2 ↓ B a continuous map with F (0,0) = b0. Then there exists a lift
F̃ : [0,1]2 ↓ E of F with F̃ (0,0) = e0. Furthermore, if F is an homotopy of paths,
so it is F̃ .

Corollary B.0.6. Let p : (E, e0) ↓ (B, b0) be a covering map. Then the induced

homomorphism p↘ : ω1(E, e0) ↓ ω1(B, b0) is injective.
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Convering spaces

This means that H0 = p↘(ω1(E, e0)) is a subgroup of ω1(B, b0). It turns out that
H0, called the group of covering, determines the map p, up to a suitable notion of
equivalence of coverings and further hypothesis on E and B. In particular, from
now on we consider E and B both path-connected and locally path-connected.

Definition B.0.7. Two covering maps p : E ↓ B and p
→ : E

→
↓ B are said to be

equivalent if there exists a homeomorphism h : E ↓ E
→ such that p

→
̸ h = p. The

homeomorphism h is called equivalence of covering maps.

E
h

##

p
&&

E
→

p
↓

,,

B

General lifting lemma B.0.8. Let p : (E, e0) ↓ (B, b0) be a covering map. Let
X be a path-connected, locally path-connected topological space and f : (X, x0) ↓

(B, b0) be a continuous map. Then there exists a lift f̃ : (X, x0) ↓ (E, e0) if and only
if f↘(ω1(X, x0)) ⇔ p↘(ω1(E, e0)). Furthermore, if such a lifting exists, it is unique.

The general lifting lemma leads to the following

Theorem B.0.9 (Classification of covering spaces). Let p : (E, e0) ↓ (B, b0) and

p
→ : (E→

, e
→
0) ↓ (B, b0) covering maps. There exists an equivalence of covering maps

h : (E, e0) ↓ (E→
, e

→
0) if and only if H0 = H

→
0. If h exists, it is unique.

In addition, neglecting basepoints corresponds to consider conjugate classes of
subgroups of ω1(B, b0).

Theorem B.0.10. The covering maps p : (E, e0) ↓ (B, b0) and p
→ : (E→

, e
→
0) ↓ (B, b0)

are equivalent if and only if the subgroups H0 and H
→
0 of ω1(B, b0) are conjugate.

The problem of existence of a covering space can be solved for path-connected,
locally path-connected, semi-locally simply connected spaces.

Definition B.0.11. A space X is semi-locally simply connected if every x ↗ X

has a neighbourhood U such that the homomorphism induced by the inclusion
i↘ : ω1(U, x) ↓ ω1(X, x) is trivial.

Theorem B.0.12. Let B be a path-connected, locally path-connected, semi-locally

simply connected space. Then for every subgroup G ⇔ ω1(B, b0) there exist a covering

p : E ↓ B such that G = p↘(ω1(E, e0)), for a suitable choice of e0 ↗ E.

An important class of covering spaces is that of regular ones. These coverings
are strictly related to the group of covering automorphisms.

Definition B.0.13. Let p : (E, e0) ↓ (B, b0) be a covering map. A homeomorphism
ϖ : E ↓ E is called covering automorphism if p̸ ϖ = p. The covering automorphisms
form a group, denoted Aut(E, p).

Since a covering automorphism can be seen as a lift of the covering map p, thanks
to Lemma B.0.3 it is determined by its action on any point of E.
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Convering spaces

Definition B.0.14. A covering map p : (E, e0) ↓ (B, b0) is said to be regular if H0
is a normal subgroup of ω1(B, b0).

Proposition B.0.15. A covering map p : E ↓ B is regular if and only if, for any

two points e1, e2 in the fibre p
↑1(b0), there is a covering automorphism ϖ ↗ Aut(E, p)

such that ϖ(e1) = ϖ(e2), i.e. Aut(E, p) acts transitively on E.

Another important connection between regular coverings and the group of
automorphisms is given by the following construction. For every covering map
p : E ↓ B, one can assign to [f ] ↗ ω1(B, b0) a permutation of the fibre p

↑1(b0) as
follows: for each e ↗ p

↑1(b0) there is a unique lift f̃ of f with f̃(0) = e. Let us call
1[f ](e) = f̃(1) its terminal point. Then 1[f ] : p

↑1(b0) ↓ p
↑1(b0) is a permutation

which depends only on the homotopy class of f .

Proposition B.0.16. Every such permutation 1[f ] : p
↑1(b0) ↓ p

↑1(b0) extends to a

covering automorphism ϖ[f ] : E ↓ E if and only if p is regular.

In addition, the correspondence ↽ : ω1(B, b0) ↓ Aut(E, p) is a surjective homomor-

phism, with kernel H0.
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Appendix C

Module presentation

In the following discussion, let us consider R to be a commutative ring with unit 1.

Definition C.0.1. An abelian group M is called a (left unitary) R-module if there
is a multiplication R ↔ M ↓ M such that ↖a, b ↗ R and ↖x, y ↗ M

a(x + y) = ax + ay

(a + b)x = ax + bx

(ab)x = a(bx)
1x = x.

The multiplication can be equivalently seen as a ring action of R on M , i.e a ring
homomorphism ρ : R ↓ End(M), writing ρa(x) = ax for a ↗ R and x ↗ M .
A submodule is a subgroup of M which is closed under multiplication by elements of
R. The quotient module by a submodule is the quotient group with multiplication
induced.

Definition C.0.2. Given two R-modules M, N , an R-homomorphism ↽ : N ↓ M

is a homomorphism of abelian groups compatible with the multiplication:

↽(ax) = a↽(x).

Definition C.0.3. A free R-module on the symbols x1, x2, . . . is the set of all finite
linear combinations

R ′x1, x2, . . .∞ = {

n∑

i=1
aixi | ai ↗ R, n ↗ N } ,

with group addition and module multiplication defined by

(a1x1 + a2x2 + . . . ) + (b1x1 + b2x2 + . . . ) = (a1 + b1)x1 + (a2 + b2)x2 + . . .

ϱ(a1x1 + a2x2 + . . . ) = (ϱa1)x1 + (ϱa2)x2 + . . . .

The set {x1, x2, . . . } is called the basis of M .

Definition C.0.4. Let ρ1, ρ2, · · · ↗ R ′x1, x2, . . .∞. An R-module M is said to have
an R-module presentation of the form (x1, x2, . . . | ρ1, ρ2, . . . ) if M is isomorphic to
the quotient module

M ⇐=
R ′x1, x2, . . .∞

R ′ρ1, ρ2, . . .∞
,
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Module presentation

The elements xi are called generators and the ρi relators. The equations ρi = 0 (or
an equivalent ones) are called relations.
Equivalently, M has a presentation of the form (x1, x2, . . . | ρ1, ρ2, . . . ) if there exists
a short exact sequence

0 ## R ′ρ1, ρ2, . . .∞
ω
## R ′x1, x2, . . .∞

ε
##M ## 0.

M is said to be finitely presentable if it has a presentation with a finite number of
generators and relators.
Definition C.0.5. Let M = (x1, . . . , xm | ρ1, . . . , ρn) be a finitely presentable R-
module. Then each ρi is a linear combination of the generators:

ρi =
m∑

j=1
aijxj aij ↗ R.

We define the n ↔ m matrix P = (aij) as a presentation matrix for M , associated to
the given presentation. The matrix P can be seen as the matrix which represents
the map ↽ with respect to the bases {x1, . . . , xm} and {ρ1, . . . , ρn}.

Since knowing P is the same as knowing the specific presentation, then the
presentation matrix determines M , up to R-isomorphisms.
Proposition C.0.6. If P and P

→
are two presentation matrices for an R-module

M , then these two matrices are related by a finite sequence of the following matrix

moves.

1. Permutation of rows and/or columns.

2. Addition of a scalar multiple of a row (or column) to another row (or column).

3. Replacement of a matrix Q with




0

Q
.
.
.

0
△ · · · △ 1





or vice versa.

4. Adjoin/delete a new row which is an R-linear combination of the other rows.

A proof can be found in [Zassenhaus, 1949]. The move (1) corresponds to a
permutation of generators or relators, (2) to a substitution of generators or relators
with linear combination of others, (3) to introducing a generator and a relation
defining it in terms of the others or removing a redundant generator, (4) to adding
or removing redundant relations.

The properties of the determinant together with the previous result guarantee
that the following definition is well-posed.
Definition C.0.7. Let M be a finitely presentable R-module, with an n ↔ m

presentation matrix P . Then the kth elementary ideal εk of M is the ideal of R

generated by the (n ≃ k) ↔ (m ≃ k) minors of P .
Furthermore, if we are dealing with a square n ↔ n matrix, then ε0 is the principal
ideal generated by det(P ). It is called the order ideal.
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