The first problem on your exam will be one of the following 15 problems, chosen randomly.

Problem 1. Compute the genus of the surface *X* obtained by gluing the sides of a regular 20-gon according to the pattern in the picture below.

Problem 2. Let $f: X \to Y$ be a non-constant holomorphic map between compact Riemann surfaces. Show that if $g_X = g_Y \ge 2$, then *X* and *Y* are biholomorphic.

Problem 3. Compute the genus of a double cover of \mathbb{P}^1 branched at 12 points.

Problem 4. Let *f* be a meromorphic function on a compact Riemann surface *X* with one simple pole and no other poles. Prove that $f: X \to \mathbb{P}^1$ is a biholomorphism.

Problem 5. Consider the meromorphic function $f(z) = \frac{z}{(z-1)^2}$ on \mathbb{C} . Write it as a holomorphic function on \mathbb{P}^1 and compute the ramification points and their multiplicities.

Problem 6. Consider the meromorphic function $f(z) = \frac{z^2+4}{z^3-z}$ on \mathbb{C} . Write it as a holomorphic function on \mathbb{P}^1 and compute div(*f*).

Problem 7. Show that $Pic(\mathbb{P}^1) = \mathbb{Z}$.

Problem 8. Show that, up to biholomorphism, \mathbb{P}^1 is the only compact Riemann surface of genus 0.

Problem 9. Let $X = \mathbb{C}/(\mathbb{Z} + \tau\mathbb{Z})$ be a torus and denote by $O \in X$ the unit. Prove that the functions 1, \wp , \wp' form a basis of $\mathcal{L}(3[O])$.

Problem 10. Let *D* be a divisor on \mathbb{P}^1 . Show that $\ell(D) = \max \{0, 1 + \deg D\}$.

Problem 11. Let *D* be a divisor on a compact Riemann surface *X* of genus *g*, such that deg D = 2g - 2 and $\ell(D) = g$. Show that *D* is a canonical divisor.

Problem 12. Show that every genus 2 Riemann surface is hyperelliptic, that is, it admits a degree two map to \mathbb{P}^1 .

Problem 13. Let *X* be a genus 0 Riemann surface with canonical divisor *K*. Compute $\ell(mK)$ for $m \in \mathbb{Z}$.

Problem 14. Let *X* be a torus. Show that for every divisor *D* of degree 1 there is a unique point $x \in X$ such that *D* is linearly equivalent to the divisor [x].

Problem 15. Compute the Hurwitz number $H_{0,3,0}^{\bullet}((3), (3))$ by counting permutations.