Exercise 1 (Cauchy–Riemann equations). Let f be a holomorphic function on an open $U \subseteq \mathbb{C}$. Write f(z) = u(x, y) + iv(x, y) for z = x + iy, considered as a real differentiable function on \mathbb{R}^2 . Prove that

$$u_x = v_y, \qquad v_x = -u_y. \tag{1}$$

Exercise 2. Let γ_r be the counter-clock wise oriented circle of radius r centred at the origin $0 \in \mathbb{C}$. Prove that, for $n \in \mathbb{Z}$,

$$\frac{1}{2\pi \mathrm{i}} \oint_{\gamma_r} z^{n-1} \, dz = \delta_{n,0} \,. \tag{2}$$

Exercise 3. Show that if f has a pole of order 1 at z_0 (also called a simple pole), then the residue can be computed as

$$\operatorname{Res}_{z=z_0} f(z) = \lim_{z \to z_0} (z - z_0) f(z) \,. \tag{3}$$

Exercise 4 (Residue theorem). Let γ be a counter-clock wise oriented loop in an open set $U \subseteq \mathbb{C}$ that does not cross itself and contains the points z_1, \ldots, z_N . Let f be a holomorphic function in $U \setminus \{z_1, \ldots, z_N\}$ with poles at z_1, \ldots, z_N . Then

$$\frac{1}{2\pi i} \oint_{\gamma} f(z) dz = \sum_{i=1}^{N} \operatorname{Res}_{z=z_i} f(z) .$$
(4)

• Hint. Consider (small enough) counter-clock wise oriented loops around the poles, $\gamma_1, \ldots, \gamma_N$, and the deformation of the contour $\gamma \cup \gamma_1 \cup \cdots \cup \gamma_N$ depicted in figure 1.

Exercise 5 (Basel problem **Q**). Prove the identity $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{2}$. The left-hand side is the Riemann zeta function $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$ evaluated at s = 2. Can you use the same strategy to prove the following equation?

$$\zeta(2k) = (-1)^{k+1} \frac{B_{2k}(2\pi)^{2k}}{2(2k)!},$$
(5)

where B_m is the *m*-th Bernoulli number. What is wrong with the odd values of the zeta function?

P Hint. Consider the function $f(z) = \frac{\pi}{z^2} \cot(\pi z)$ and the residue theorem.

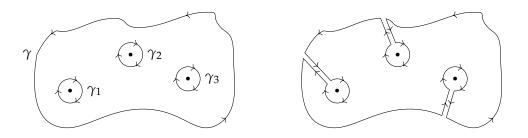


FIGURE 1. Contour deformation in the proof of the residue theorem.