Exercise 1 (Stereographic projections). On the circle

$$S^{1} \coloneqq \left\{ (x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1 \right\},$$
(1)

let N := (0,1) and S := (0,-1) be the north and south poles respectively. Define $U'_N := S^1 \setminus N$ and the map $\varphi'_N : U'_N \to \mathbb{R}$ by declaring that $\varphi'_N(x,y)$ is the unique intersection between the x-axis and the line passing through (x,y) and N (see figure 1). Similarly, define $U'_S := S^1 \setminus S$ and the map $\varphi'_S : U'_S \to \mathbb{R}$ declaring that $\varphi'_S(x,y)$ is the unique intersection between the x-axis and the line passing through (x,y) and N (see figure 1).

- Find a formula for φ'_N and φ'_S .
- *Prove that* φ'_{N} *and* φ'_{S} *are homeomorphisms.*
- *Prove that transition function* φ'_{NS} *is smooth.*

Can you generalise this construction to S^n ?

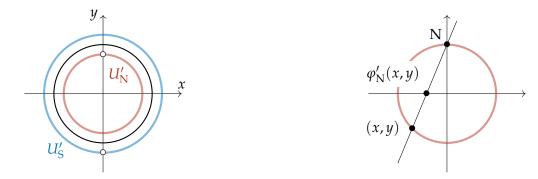


FIGURE 1. The atlas for the circle provided by the stereographic projections.

Exercise 2 (Graphs of smooth functions). Consider an open set $U \subseteq \mathbb{R}^n$ and a smooth function $f: U \to \mathbb{R}^m$. Show that the graph of f, that is

$$\Gamma_f = \{ (x, y) \in U \times \mathbb{R}^m \mid y = f(x) \}$$
(2)

is a smooth manifold of dimension n.

Exercise 3 (The sphere model of the complex projective line). *Prove that any point* $[z_0 : z_1] \in P^1(\mathbb{C})$ *can be realised as* $[x_1 : x_2 + ix_3]$ *, with* x_i *real,* $x_1^2 + x_2^2 + x_3^2 = 1$ *, and* $x_1 \ge 0$ *. Deduce that* $P^1(\mathbb{C})$ *, as a 2-dimensional real smooth manifold, is the sphere* S^2 .

Exercise 4 (The cross-cap). Repeat the same argument for $P^2(\mathbb{R})$, and deduce that the real projective plane can be identified with a hemisphere with boundary glued along the antipodal map.

Exercise 5 (Torus). Let ω_1 and ω_2 be two complex numbers which are linearly independent over \mathbb{R} (that is, they do not lie on the same real line through 0 in \mathbb{C}). The set of all integral linear combinations of ω_1 and ω_2 , that is

$$\Lambda \coloneqq \{ n_1 \omega_1 + n_2 \omega_2 \in \mathbb{C} \mid n_1, n_2 \in \mathbb{Z} \},$$
(3)

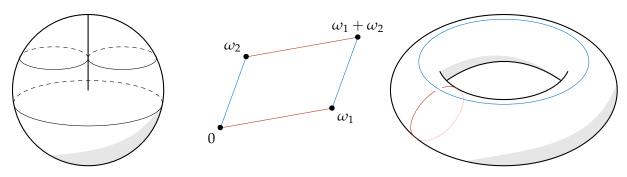


FIGURE 2. On the left, the cross-cap. On the right, the the gluing of a polygon and its identification with a torus.

is called a lattice. Define $T := \mathbb{C}/\Lambda$ *, equipped with the quotient topology induced by the projection map* $\pi : \mathbb{C} \to T$ *.*

- Consider the closed polygon P ⊂ C with vertices 0, ω₁, ω₂, ω₁ + ω₂. Show that for any z ∈ C, there exists z₀ ∈ P such that z − z₀ ∈ Λ. Thus, π|_P: P → T is surjective. What happens at the sides of P?
- Deduce that every point in *T* has a neighbourhood homeomorphic to a disc in *C*, and that the transitions maps are translations.

Since translations are holomorphic, we deduce that T is a Riemann surface.