Exercise 1. Let $A = \{a, b\}$, so that $A \cup \overline{A} = \{a, b, \overline{a}, \overline{b}\}$. Consider the identification polygons

 $w_1 = a\bar{a}b\bar{b}$, $w_2 = aab\bar{b}$, $w_3 = ab\bar{a}\bar{b}$, $w_4 = aba\bar{b}$.

Which surfaces do they represent?

Exercise 2. Convince yourself that $P^2(\mathbb{R}) \# P^2(\mathbb{R})$ is the Klein bottle, and prove using polygon identification that $P^2(\mathbb{R}) \# T \cong P^2(\mathbb{R})^{\# 3}$.

Exercise 3. Come up with a list of identification polygons that produce the list in the classification theorem of connected, compact surfaces. Prove that any identification polygon gives a surface homeomorphic to one in the list.

? Hint. For the second part, you can follow the steps below.

- Prove that if an identification polygon contains the subword $a\bar{a}$ or $\bar{a}a$, then you can remove the subword and obtain an homeomorphic surface.
- Prove that you can always obtain an equivalent identification polygon where all vertices are identified with each other.
- Prove that you can always reduce yourself to the case $S \cong S' \# P^2(\mathbb{R})^{\#m}$ and S' only contains pairs of conjugate letters.
- Prove that you can always reduce yourself to the case $S \cong T^{\#g} \# P^2(\mathbb{R})^{\#m}$.
- Conclude that if there is one $P^2(\mathbb{R})$ factor, then the surfaces can be re-arranged to have only $P^2(\mathbb{R})$ factors.

Exercise 4. Prove that the Euler characteristic of $T^{\#g}$ is 2 - 2g and the Euler characteristic of $P^2(\mathbb{R})^{\#m}$ is 2 - m. Conclude that the genus and the demigenus uniquely characterise the surface within the orientable and the non-orientable classes.