Exercise 1. Let $f: X \to Y$ be a non-constant holomorphic map between compact Riemann surfaces.

- Show that $g_X \ge g_Y$.
- Suppose that both X and Y have genus 1. Conclude that f, must be unramified.
- Suppose that $Y = P^1(\mathbb{C})$ and f is unramified. Conclude that X is biholomorphic to $\mathbb{P}^1(\mathbb{C})$.
- Show that if $g_X = g_Y \ge 2$, then X and Y are biholomorphic.

Exercise 2. Consider the meromorphic function on \mathbb{C} given by $f(z) = \frac{z^3}{1-z^2}$. Can you define a map $F: P^1(\mathbb{C}) \to P^1(\mathbb{C})$ that equals f in the affine chart $\{ [z:w] | w \neq 0 \}$? Show that F has degree 3, find its ramification points, and verify the Riemann–Hurwitz formula in this case.

Exercise 3 (Fermat's Last Theorem for polynomials). Let $F, G, H \in \mathbb{C}[z, w]$ be non-constant, coprime, homogeneous polynomials such that $F^n + G^n = H^n$. Show that $n \leq 2$.

Exercise 4. For an open set $U \subseteq \mathbb{C}$, prove that $\operatorname{ord}_{z_0} \colon \mathcal{M}(U) \to \mathbb{Z} \cup \{\infty\}$ is a discrete valuation:

- $\operatorname{ord}_{z_0}(f \cdot g) = \operatorname{ord}_{z_0}(f) + \operatorname{ord}_{z_0}(g)$,
- $\operatorname{ord}_{z_0}(f+g) \ge \min \{ \operatorname{ord}_{z_0}(f), \operatorname{ord}_{z_0}(g) \},\$
- $\operatorname{ord}_{z_0}(f) = \infty$ if and only if f = 0.