Exercise 1 (Meromorphic functions on \mathbb{P}^1). *Prove that all meromorphic on* \mathbb{P}^1 *are of the form*

$$[z:w] \longmapsto [F(z,w):G(z,w)] \tag{1}$$

where $F, G \in \mathbb{C}[z, w]$ are homogeneous polynomials of the same degree with no common components.

Exercise 2 (Weierstraß gap theorem for the torus). *Fix a lattice* $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, and assume $f: \mathbb{C} \to \mathbb{P}^1$ is a Λ -periodic function with no poles on the boundary of the closed polygon $P \subset \mathbb{C}$ with vertices 0, $\omega_1, \omega_2, \omega_1 + \omega_2$ (the fundamental domain). Show that the sum of the residues of all poles of f inside P is zero. Conclude that no such f can have a unique simple pole in P.

Exercise 3 (Weierstraß \wp -function). *Fix a lattice* $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, and consider

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda^*} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right),$$
(2)

the Weierstraß \wp -function associated to Λ .

(*i*) Show that the series defining \wp converges absolutely for every $z \in \mathbb{C} \setminus \Lambda$ and uniformly on compact subsets of $\mathbb{C} \setminus \Lambda$.

P Hint. Use Weierstraß's M-test.

- (ii) Show that the derivative \wp' is Λ -periodic and odd and that \wp is even. Use this to show that \wp is Λ -periodic. Conclude that \wp is a meromorphic function on \mathbb{C}/Λ with a single double pole at [0].
- (iii) Show that \wp' has simple zeroes exactly at the points $\left[\frac{\omega_1}{2}\right], \left[\frac{\omega_1}{2}\right], \left[\frac{\omega_1+\omega_2}{2}\right] \in \mathbb{C}/\Lambda$. • Hint. Use that \wp' satisfies $\sum_{[z]} \operatorname{ord}_{[z]}(\wp') = 0$.
- (iv) Prove that every Λ -periodic function f with double poles exactly at the elements of Λ is of the form $f(z) = a\wp(z) + b$ for $a \in \mathbb{C}^*, b \in \mathbb{C}$. Hence, up to translation, scaling and adding constant functions, \wp is the unique meromorphic function on \mathbb{C}/Λ with a single double pole.

Hint. Use Weierstraß's gap theorem.

(v) Let the Laurent expansion of (the even function) \wp around z = 0 be given by

$$\wp(z) = \frac{1}{z^2} + c + \frac{1}{20}g_2 z^2 + \frac{1}{28}g_3 z^4 + \mathcal{O}(z^6).$$
(3)

Show that c = 0 and that \wp satisfies the differential equation

$$(\wp')^2 = 4\,\wp^3 - g_2\,\wp - g_3\,. \tag{4}$$

Exercise 4 (Complex tori and elliptic curves **P**). Let $E_{\Lambda} = Z(z_1^2 z_2 - z_0^3 + \frac{g_2}{4} z_0 z_2^2 + \frac{g_3}{4} z_0^3) \subset \mathbb{P}^2$. Show that E_{Λ} is a smooth projective plane curve if and only if $\Delta = g_2^3 - 27g_3^2 \neq 0$. Prove that the function

$$\begin{array}{cccc}
\mathbb{C}/\Lambda & & \xrightarrow{\phi} & E_{\Lambda} \\
[z] & \longmapsto & [\wp(z):2\wp'(z):1]
\end{array}$$
(5)

is well-defined (here we set $\phi([0]) = [0:1:0]$ *), and show that it defines a biholomorphism. Conclude that all elliptic curves are biholomorphic to complex tori.*