Exercise 1. Consider the meromorphic function $f(z) = \frac{z^3 - z^2}{z^2 + 1}$ on \mathbb{C} .

- (1) Using the identification $\mathbb{C} \subset \mathbb{P}^1, z \mapsto [z:1]$, on source and target, identify f as a map $\mathbb{P}^1 \to \mathbb{P}^1$ and write it in the form $[z:w] \mapsto [F(z,w):G(z,w)]$ for homogeneous polynomials F, G of the same degree having no common factors.
- (2) Compute $\operatorname{div}(f)$.

Exercise 2 (Abel's theorem 2.0). On a torus $T = \mathbb{C} / \Lambda$, consider the map

A: Div
$$(T) \longrightarrow T$$
, $\sum_{x \in T} n_x[x] \longmapsto \sum_{x \in T} n_x x$. (1)

The sum on the right-hand side is intended according to the group law on T. Show that D is principal if and only if deg(D) = 0 and A(D) = [0]. Conclude that two divisors $D, E \in Div(X)$ are linearly equivalent if and only if deg(D) = deg(E) and A(D) = A(E).

• Hint. Use Abel's theorem for the torus and the existence of theta functions.

Exercise 3 (Pullback of divisors). Let $\varphi: X \to Y$ be a holomorphic map between compact Riemann surfaces. For any point $y \in Y$, define the pullback

$$\varphi^*[y] := \sum_{x \in \varphi^{-1}(y)} \mu_x(\varphi) \cdot [x],$$
⁽²⁾

and extend it by linearity to a group morphism φ^* : Div(Y) \rightarrow Div(X). Prove that deg(φ^*D) = deg(φ) · deg(D). What happens when you pullback principal divisors?

Exercise 4 (Complete linear systems). *Let* X *be a compact Riemann surface,* $D \in Div(X)$ *. Define the complete linear system associated to* D *as*

$$|D| \coloneqq \{ E \in \operatorname{Div}(X) \mid E \ge 0 \text{ and } E \sim D \}.$$
(3)

Prove that the map

$$\mathbb{P}(\mathcal{L}(D)) \longrightarrow |D|, \qquad [f] \longmapsto \operatorname{div}(f) + D \tag{4}$$

is well-defined and is an isomorphism. Compute |D| for:

- $X = \mathbb{P}^1$ and D = d[x];
- $X = \mathbb{C}/\Lambda$ and D = [x].