Exercise 1 (Weierstraß's gap theorem). Let X be a compact Riemann surface of genus g > 0, and let $x \in X$ be a point. Show that there are precisely g integers (depending on x) of the form

$$1 \le k_1 < k_2 < \dots < k_g < 2g \tag{1}$$

such that there exists no meromorphic function on X with a single pole of order k_i at x.

Exercise 2 (Compact Riemann surfaces are projective). *Show that every compact Riemann surface X admits an embedding in projective space.*

Exercise 3 (Holomorphic q-differentials). For $q \in \mathbb{Z}$, a holomorphic differential of order q (or simply *q*-differential) on an open set $U \subset \mathbb{C}$ is an expression of the form

$$f(z) dz^q. (2)$$

As in the case of holomorphic functions or differentials (corresponding to the cases q = 0 and q = 1 respectively), there is a natural notion of transformation under a holomorphic change of coordinate $w = \tau(z)$: it is the one induced by $dw^q = (\tau'(z))^q dz^q$. Hence, we have a well-defined notion of holomorphic q-differentials on a Riemann surface.

• Show that, for a compact Riemann surface X with canonical divisor K, the space $\mathcal{L}(qK)$ is isomorphic to the space of q-differential on X.

Genus	Order	Dimension
g = 0	$\begin{array}{l} q \leq 0 \\ q > 0 \end{array}$	1-2q
g = 1	q	1
$g \ge 2$	q < 0	0
	q = 0	1
	q = 1	8
	q > 1	(2q-1)(g-1)

• Show that the dimension of $\mathcal{L}(qK)$ is given by the following table.

Exercise 4. A Riemann surface X is called hyperelliptic if and only if it admits a degree two map to \mathbb{P}^1 .

- Show that every genus 0 Riemann surface is hyperelliptic.
- Show that every genus 1 Riemann surface is hyperelliptic.
- Show that every genus 2 Riemann surface is hyperelliptic.