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The course will be a first introduction to Riemann surfaces. These are beautiful objects that sit at
the intersection of algebraic geometry, differential geometry, and analysis. We will aim to cover
the theorems of Riemann–Hurwitz and Riemann–Roch, as well as the basics of Hurwitz theory.

References:
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1. Background

Lecture 1

Feb 22
nd, 2024 1.1. Complex analysis. How do you calculate functions like ex, sin(x), or cos(x) at any given

x0 value? This is a very old and classic question that dates back to the 14th century. The basic
idea is to approximate a smooth function near an input value by the value of the function and its
derivatives:

f (x) ≈
N

∑
n=0

f (n)(x0)

n!
(x− x0)

n . (1.1)

The right-hand side, known as the Taylor polynomial, is a polynomial that well approximates
the function f around x0. The higher the degree of the Taylor polynomial, the more derivative
we incorporate into it, yielding a better and better approximation of the original function (see
figure 1). Eventually, in the limit, we get what is known as the Taylor series of f around x0.

For functions such as the exponential near x0 = 0, the Taylor series does not just approximate
the function, but actually equals it for all values of x for which the Taylor series converges. And
for the exponential, it just so happens that the Taylor series converges for all possible values of x,
meaning ex precisely equals its Taylor series for all values of x both near and far away from zero:

ex =
∞

∑
n=0

xn

n!
. (1.2)

While it is true that the Taylor polynomial will approximate the behaviour of ex near zero to
some extent, and will further improve as we use higher degree polynomials, there is no reason to
assume beforehand that the approximation will improve to arbitrary precision as we keep going
and ultimately reach perfect equality in the limit. The reason why not is actually simple: these
polynomial approximations were constructed only using local information about the function at
x0, and yet somehow, it is enough to reproduce the entire function everywhere else.

Being equal to its own Taylor series, even in a small neighbourhood of the expansion point, is a
peculiar feature of the function ex. There are smooth functions whose Taylor expansions around
a point are not equal to the function on any neighbourhood surrounding the expansion point, no
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Figure 1. The exponential function ex and its first few Taylor series (left), and the
piecewise function g(x) (right).
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matter how small. A classic example is the piecewise function given by

g(x) :=

e−
1

x2 for x ̸= 0 ,

0 for x = 0 .
(1.3)

This function and all its derivatives vanish at x0 = 0, implying that its Taylor polynomials and
its Taylor series at x0 = 0 are simply the constant function zero. However, for any non-zero value
of x, the function g is non-zero, i.e. it does not match its Taylor expansion anywhere on R \ { 0 }
(see figure 1).

The essential element to understand the difference between these these two cases, the exponential
function and the function g, is Taylor’s theorem. Taylor’s theorem expresses the error committed
in approximating a function by its Taylor polynomial of a given order n:

f (x)︸︷︷︸
original
function

−
N

∑
n=0

f (n)(x0)

n!
(x− x0)

n

︸ ︷︷ ︸
Taylor polynomial

=
f (N+1)(ξ)

(N + 1)!
(x− x0)

N+1

︸ ︷︷ ︸
error term

(1.4)

for some ξ ∈ [x0, x].

Let us go back to the exponential function, with expansion point x0 = 0. In this case, we have
f (N+1)(ξ) = eξ for some ξ ∈ [x0, x], which can be bounded independently of n. Thus, as we
increase the order of the Taylor approximation, the entire remainder approaches zero since the
(N + 1)! in the denominator will overpower the geometric factor of (x− x0)N+1 in the numerator.
The presence of et cannot prevent the convergence, as it is confined in [1, ex]. We thus conclude
that the Taylor series converges exactly to the original function ex for all values of x.

The key to why the exponential function, and also functions like sine and cosine, equals its Taylor
series is because their N-th order derivatives grow much slower than N!. In fact, their higher
order derivatives do not grow at all: they stay bounded as n increases. This is not the case with
our pathological example g(x), whose derivatives near x0 = 0 grow faster than factorial speed
as the derivative order increases. Now functions like ex, sin(x) and cos(x) that equal their Taylor

n 0 1 2 3 4 5 6

g(n)( 1
4 ) 1.12 · 10−7 1.44 · 10−5 1.67 · 10−3 1.72 · 10−1 15.37 1128.01 61284.06

n! 1 1 2 6 24 120 720

expansions near the expansion point have a special name: they are called analytic functions. This
is a rare and special property, yet almost all functions you are likely to work with on a regular
basis are analytic. Part of the reason is that any arithmetic combination or function composition
of analytic functions results in another analytic function. By contrast, the piece-wise function
g(x) is not analytic, albeit being smooth (that is, even though it has derivatives of all orders at all
points in its domain). This implies that smoothness does not imply analyticity. However, there is
a world where non-analytic smooth functions can never appear: the world of complex numbers.
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1.1.1. Holomorphic functions. To start with, notice that the concept of series makes perfect sense in
the complex setting. What about the concept of differentiable function? In the complex setting,
the concept of differentiable function deserves a new name: holomorphicity.

Definition 1.1. Let U ⊆ C be an open set. A function f : U → C is called holomorphic at z ∈ U
if the following limit exists:

lim
h→0

f (z + h)− f (z)
h

. (1.5)

Here h ∈ C (and such that z + h ∈ U). We write f ′(z) for its value. The function f is said to be
holomorphic in U if it is holomorphic at every point z ∈ U.

This is similar to the definition of differentiable functions in the real setting. However the condi-
tion of being holomorphic is much stronger. Indeed, the following result holds. As we will see
later, holomorphic functions are automatically smooth and analytic. This is one example of the
great irony that complex numbers make everything simpler.

In order to prove the analyticity property, let us recall some other useful facts about holomorphic
functions. Notice that, in the limit defining f ′(z), we can choose the displacement h to be purely
real or purely imaginary. This not only proves that the real and imaginary components of f
are differentiable, but also implies that a specific set of partial differential equations hold: the
Cauchy–Riemann equations.

Theorem 1.2 (Cauchy–Riemann equations). Let f be a holomorphic function on U. Write f (z) =

u(x, y) + iv(x, y) for z = x + iy, considered as a real differentiable function on R2. Then

ux = vy , vx = −uy . (1.6)

Exercise 1.1. Prove the Cauchy–Riemann equations.

Corollary 1.3. Let f be a non-constant holomorphic function. As a function from the real plane to itself,
f is orientation-preserving.

Sketch of the proof. Intuitively, an orientation of the plane amounts to specifying the notions of
clockwise and counter-clockwise. A function is orientation-preserving if it preserves such a
notion. A way of characterizing orientation-preserving functions is by looking at the sign of the
determinant of the Jacobian matrix. The function is orientation-preserving if the determinant is
positive on a dense open set. For holomorphic functions, by Cauchy–Riemann, we find

det (Jac f ) = det

(
ux uy

vx vy

)
= u2

x + v2
x , (1.7)

which is indeed positive on an open dense set (otherwise, f would be constant). □

Another important property of non-constant holomorphic functions is that they send open sets
to open sets.

Theorem 1.4 (Open mapping theorem). Let f be a non-constant holomorphic function. Then f is an
open map.
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Figure 2. Example of a path in C.

1.1.2. Cauchy’s formula and applications. Given a smooth path γ : [a, b] → U ⊆ C and a holomor-
phic function f : U → C, we define the integral of f along γ as∫

γ
f (z) dz :=

∫ b

a
f (γ(t))γ′(t) dt . (1.8)

Exercise 1.2. Let γr be the counter-clock wise oriented circle of radius r centred at the origin. Prove that,
for n ∈ Z, 1

2πi

∮
γr

zn−1 dz = δn,0.

The remarkable property of holomorphic functions is the invariance of the integral along defor-
mations of the path.

Theorem 1.5. Let γ0, γ1 : [a, b]→ U be two paths related by a smooth deformation keeping the end-points
fixed. That is, there exists a smooth function H : [a, b]× [0, 1]→ U such that H(·, 0) = γ0, H(·, 1) = γ1,
and H(a, ·) = za, H(b, ·) = zb. Then ∫

γ0

f (z) dz =
∫

γ1

f (z) dz . (1.9)

Proof. For s ∈ [0, 1], let γs be the path defined by H(·, s). Set I(s) :=
∫

γs
f (z)dz. A simple

computation shows that

dI(s)
ds

=

[
f (H(t, s))

∂H(t, s)
∂s

]b

t=a
. (1.10)

Since H(a, ·) and H(b, ·) are constant, dI(s)
ds is constantly zero. In particular, I(0) = I(1). □

A simple consequence of the above theorem is that the integral of homomorphic functions along
a loop (i.e. a closed path) within a simply connected domain of holomorphicity vanishes. This is
because, in this case, we can deform the loop to a point, for which the integral vanishes. Another
fundamental consequence is the Cauchy’s integral formula.

Theorem 1.6 (Cauchy’s integral formula). Let γ be a counter-clock wise oriented loop around z ∈ C,
and f a holomorphic function on a neighbourhood U of γ. Then

f (z) =
1

2πi

∮
γ

f (ζ)
ζ − z

dζ . (1.11)
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Sketch of the proof. Let g(ζ, z) = f (ζ)− f (z)
ζ−z . As a function of ζ, g is holomorphic in U. Indeed,

the only problematic point is ζ = z, for which the value is given by f ′(z). Thus, we conclude
that 1

2πi

∮
γ g(ζ, z) dζ = 0. On the other hand, exercise 1.2 implies that 1

2πi

∮
γ

f (z)
ζ−z dζ = f (z). All

together, we find the thesis. □

As promised, we can finally prove that holomorphic functions are analytic:

f (z) =
1

2πi

∮
γ

f (ζ)
ζ − z0 + z0 − z

dζ =
1

2πi

∮
γ

f (ζ)
ζ − z0

1
1− z−z0

ζ−z0

dζ

=
1

2πi

∮
γ

f (ζ)
ζ − z0

(
∞

∑
n=0

(
z− z0

ζ − z0

)n
)

dζ =
∞

∑
n=0

(
1

2πi

∮
γ

f (ζ)
(ζ − z0)n+1 dζ

)
(z− z0)

n . (1.12)

Cauchy’s integral formula not only gives a proof of the analyticity of holomorphic functions, but
also provides an integral formula for their n-th derivative:

f (n)(z) =
n!

2πi

∮
γ

f (ζ)
(ζ − z)n+1 dζ . (1.13)

Notice that the reason why Cauchy’s formula produces something non-trivial is that we in-
troduced a singularity at ζ = z in the integrand. This motivates the study of singularities of
functions in the complex plane.

Definition 1.7. Given a positive integer k, we say that a complex function f has a pole of order k
at the point z0 ∈ C if (z− z0)k f (z) is holomorphic at z0 but (z− z0)k−1 f (z) is not. A function is
called meromorphic on an open set U ⊆ C if for every point z0 ∈ U, f is either holomorphic or
it has a pole at z0.

A simple consequence of the analyticity result is that a function f with a pole of order k at the
point z0 ∈ C admits an expansion of the form

f (z) =
∞

∑
n=−k

an(z− z0)
n (1.14)

with a−k ̸= 0. Series of this form are called Laurent series. An important role is played by the
coefficient of (z− z0)−1.

Definition 1.8. Let f be a meromorphic function in U. Define the residue at z0 ∈ U as the
coefficient of (z− z0)−1 in the Laurent expansion of f at z0. We denote it as Resz=z0 f (z).

Exercise 1.3. Show that if f has a pole of order 1 at z0 (also called a simple pole), then the residue can be
computed as

Res
z=z0

f (z) = lim
z→z0

(z− z0) f (z) . (1.15)

Exercise 1.4 (Residue theorem). Let γ be a counter-clock wise oriented loop in U that does not cross
itself and contains the points z1, . . . , zN . Let f be a holomorphic function in U \ {z1, . . . , zN} with poles
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γ
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•

•

•

Figure 3. Contour deformation in the proof of the residue theorem.

at z1, . . . , zN . Then
1

2πi

∮
γ

f (z) dz =
N

∑
i=1

Res
z=zi

f (z) . (1.16)

� Hint. Consider (small enough) counter-clock wise oriented loops around the poles, γ1, . . . , γN , and the deformation

of the contour γ ∪ γ1 ∪ · · · ∪ γN depicted in figure 3.

Exercise 1.5 (Basel problem þ). Prove the identity ∑∞
n=1

1
n2 = π2

2 . The left-hand side is the Riemann
zeta function ζ(s) := ∑∞

n=1
1
ns evaluated at s = 2. Can you use the same strategy to prove the following

equation?

ζ(2k) = (−1)k+1 B2k(2π)2k

2(2k)!
, (1.17)

where Bm is the m-th Bernoulli number. What is wrong with the odd values of the zeta function?

� Hint. Consider the function f (z) = π
z2 cot(πz) and the residue theorem.

Lecture 2

Feb 29
th, 2024 Another important application of Cauchy’s formula is the inverse mapping theorem, which as-

serts that holomorphic functions with non-vanishing derivative are locally invertible.

Theorem 1.9 (Inverse mapping theorem). Let f be a holomorphic function in U, and z0 ∈ U such
that f ′(z0) ̸= 0. There exists a neighbourhood V of f (z0) and a holomorphic function g in V such that
g ◦ f = id on g(V).

Proof. Without loss of generality, we suppose that U is small enough such that f is injective and
f ′ is non-vanishing in U. Since holomorphic functions are open, there exists a ball B centred at
f (z0) and contained in f (U). We take V = B, so that f restricted to f−1(V) is invertible (in the
set-theoretic sense). To conclude the prove, we need to show that inverse function is holomorphic
in V. Let γ be the counter-clock wise oriented loop parametrising the perimeter of B. We claim
that

g(w) :=
1

2πi

∮
γ

ζ f ′(ζ)
f (ζ)− w

dζ (1.18)

is the desired inverse. This would conclude the proof, since the right-hand side is holomorphic.
In order to prove the claim, let z ∈ f−1(V), with w = f (z). The integrand in the definition of g
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has a simple pole at ζ = z. Thanks to the residue theorem (cf. exercise 1.3), we find

g(w) = Res
ζ=z

ζ f ′(ζ)
f (ζ)− w

= lim
ζ→z

(ζ − z)
ζ f ′(ζ)

f (ζ)− w
. (1.19)

As limζ→z
ζ−z

f (ζ)−w = 1
f ′(z) , we find the thesis. □

1.1.3. Towards Riemann surfaces: the root function. Consider the function f (z) = z2. The function
is not injective since both z and −z have the same image. However, according to the inverse
mapping theorem, the function f is locally invertible around every point z0. Such a local inverse
function is called a branch of the square-root function w1/2. A natural question is: how large can
the domain of such a branch be?

Intuitively, the most we can hope for is the complex plane minus the origin (i.e. all points where
f ′ is non-vanishing). However, this is not possible, as can be easily seen by the following. Take
z0 = 1, and let g(w) be the local inverse of f (z) around z0. Writing a complex number in
polar coordinates as w = re2πiθ , we see that an expression for g is given by g(w) =

√
reπiθ . If

we suppose for a moment that g is well-defined on the whole C× := C \ { 0 }, we would have
that a full circle around the origin would bring us back to the same point. For instance, taking
γ : [0, 1)→ C with γ(t) = e2πit, the unit circle, we would have

lim
t→1

g
(
γ(t)

)
= g

(
γ(0)

)
. (1.20)

But this is not the case, since the left-hand side is −1, while the right-hand side is +1. Hence, a
branch of the square-root function may be extended (as a holomorphic function) to any domain
U ⊂ C× such that it is not possible to walk around the origin in U. Typical examples of maximal
domains of definitions consist of the complex plane minus a real half-line stemming from the
origin. We can actually extend the domain of the root function beyond the complex plane minus
a real half-line by glueing two copies of such maximal domain on top of each other, as shown in
figure 4.

•

•

g g

∼=

•

•

Figure 4. The domain of the square-root function.
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A more formal approach, due to to Riemann, consists in taking as domain of w1/2 the graph of
the function z2:

X :=
{
(z, w) ∈ C× ×C×

∣∣ w = z2 } . (1.21)

For any given point x = (z, w) ∈ X, we can use w as a local coordinate for X, and composing
with the projection onto the second factor gives a branch of the square-root.

Before Riemann, the square-root function (an more generally, the “inverse” of any power z 7→ zr)
was traditionally viewed as a multi-valued function, implying the existence of several distinct
values of z for any given w ̸= 0. Riemann, however, brought about a shift in perspective by
taking objects such as X as the domain. The space X, which captures all possible branches of the
square-root without making any choice of domain restriction, is called the Riemann surface of
the square-root.

To conclude this section, we show how root functions describe the local geometry of holomorphic
functions.

Lemma 1.10 (Local form of holomorphic function). Let w = f (z) be a holomorphic function on U
and z0 ∈ U such that f ′(z0) = f ′′(z0) = · · · = f k−1(z0) = 0, and f (k)(z0) ̸= 0. Then there exist
holomorphic changes of variable (z, w) 7→ (z̃, w̃) such that in the new variables f is given by w̃ = z̃k.

Proof. The Taylor series of f at z0 reads

f (z)− f (z0) =
∞

∑
n=k

an(z− z0)
n (1.22)

with ak ̸= 0. Hence, the function g(z) := ∑∞
n=k an(z− z0)n−k is holomorphic with g(z0) ̸= 0. In

particular, it admits a branch of the k-th root, that we denote as k
√

g(z). Setting z̃ = (z− z0)
k
√

g(z),
it is easy to check that z̃ has non-vanishing derivative at z0, thus locally invertible by the inverse
mapping theorem. In other words, z 7→ z̃ is a legitimate change of variable. Furthermore, setting
w̃ = w− f (z0) (which is again a legitimate change of variable), we find that w̃ = z̃k. □

1.2. Manifold theory. In the previous section we understood how the domain of the square-
root function is a complicated object obtained by patching together well-understood geometries,
namely open subsets of C. This concept extends to the idea of a manifold: a space whose overall
geometry may be intricate, yet the local geometry around each point remains familiar.

1.2.1. Manifolds: definition and examples. The concept of a manifold is one of the fundamental
insights of 19th century mathematics. Before that, geometric objects existed mostly only extrin-
sically, i.e., as subsets of the affine space RN . Examples include:

• The circle:
S1 :=

{
(x, y) ∈ R2 ∣∣ x2 + y2 = 1

}
⊂ R2 . (1.23)

• The sphere:
S2 :=

{
(x, y, z) ∈ R3 ∣∣ x2 + y2 + z3 = 1

}
⊂ R3 . (1.24)
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• Parametric curves, such as:

C :=
{
(t, t2, t3) ∈ R3 ∣∣ t ∈ R

}
⊂ R3 . (1.25)

x

y

(a) The circle S1 ⊂ R2.

y

x

z

(b) The sphere S2 ⊂ R3.

x

y
z

(c) The curve C ⊂ R3.

Figure 5. Examples of manifolds embedded in their ambient space.

However, Riemann realized that geometric objects can exist intrinsically, that is, without the need
for an ambient space. Informally, a smooth manifold is a topological space that locally looks like
the affine space Rn (see figure 6).

Definition 1.11. A real smooth manifold of dimension n is a second-countable and Hausdorff
topological space X together with an open cover X =

⋃
i∈I Ui such that

• there exist homeomorphisms, called local charts, φi : Ui → Vi with Vi ⊂ Rn open;
• for all Ui, Uj with Ui ∩Uj ̸= ∅, the transition map

φi,j := φj ◦ φ−1
i : φi(Ui ∩Uj) −→ φj(Ui ∩Uj) (1.26)

is smooth.

The collection { (Ui, φi) }i∈I is called an atlas.

Second countable and Hausdorff are point-set conditions that exclude pathological examples.
Second countable rules out spaces considered ’too large’, like “the long line”, while Hausdorff
eliminates spaces exhibiting peculiarities such as “the line with two origins”.

Example 1.12. Consider X = S1 = { (x, y) ∈ R2 | x2 + y2 = 1 }, which is naturally equipped with
a second-countable Hausdorff topology. Let

UN :=
{
(x, y) ∈ S1

∣∣∣ y > 0
}

, US :=
{
(x, y) ∈ S1

∣∣∣ y < 0
}

,

UE :=
{
(x, y) ∈ S1

∣∣∣ x > 0
}

, UW :=
{
(x, y) ∈ S1

∣∣∣ x < 0
}

,
(1.27)

which form an open cover of S1.

Take V := (−1, 1) ⊂ R, and define φN : UN → V and φS : US → V as the projections to the x-axis,
and likewise φE : UE → V and φW : UW → V as the projections to the y-axis (see figure 7). Notice
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φi

φ−1
i φ−1

j

φj

X

Ui
Uj

Rn

φi,j

Rn

Vi Vj

Figure 6. Charts and transition functions on a manifold.

that φ∗ is a homeomorphism for all ∗ ∈ {N, S, E, W }. For instance, φ−1
N (x) = (x,

√
1− x2).

Furthermore, the transition maps are smooth. For instance,

UNE := UN ∩UE =
{
(x, y) ∈ S1

∣∣∣ x > 0 , y > 0
}

. (1.28)

Then φNE : (0, 1)→ (0, 1) is the function x 7→
√

1− x2, which is indeed smooth.

x

y UN

US

UE

UW •
(x, y)

•

φN(x, y)

Figure 7. The atlas for the circle provided by the axes projections.

A priori, we could have chosen a different atlas for the circle. An example is the atlas determined
by the stereographic projection.

Exercise 1.6. On the circle S1, let N := (0, 1) and S := (0,−1) be the north and south poles respectively.
Define U′N := S1 \N and the map φ′N : U′N → R by declaring that φ′N(x, y) is the unique intersection
between the x-axis and the line passing through (x, y) and N (see figure 8). Similarly for U′S := S1 \ S
and the map φ′S : U′S → R.

• Find a formula for φ′N and φ′S.
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• Prove that φ′N and φ′S are homeomorphisms.
• Prove that transition function φ′NS is smooth.

x

y

U′N

U′S

•
N

•(x, y)

•
φ′N(x, y)

Figure 8. The atlas for the circle provided by the stereographic projections.

To convey the concept that different atlases can yield the same manifold structure, we define
compatibility between two atlases A = { (Ui, φi) } and A ′ = { (U′j , φ′j) } of X if their union,
A ∪A ′, forms an atlas for X. Compatibility is an equivalence relation among atlases of X, and
a (real smooth, n-dimensional) manifold structure is an equivalence class of compatible atlases.
An example of compatible atlases is the axes projections and the stereographic projections on the
circle.

An example of ‘intrinsic manifold’ is given by the projective space, which formalise the idea of
parametrising lines in space.

Example 1.13. The real projective space of dimension n is defined as

Pn(R) :=
{
(x0, . . . , xn) ∈ Rn+1 \ {0}

}/
∼ (1.29)

where (x0, . . . , xn) ∼ (x′0, . . . , x′n) if and only if ∃λ ∈ R× such that (x0, . . . , xn) = λ(x′0, . . . , x′n).
Denote equivalence classes of points as [x0 : · · · : xn]. The space Pn(R) is naturally equipped
with a second-countable and Hausdorff topology1. What are the charts of Pn(R)?

Consider the subsets Ui ⊂ Pn(R) and the maps φi : Ui → Rn defined as

Ui := { [x0 : · · · : xn] ∈ Pn(R) | xi ̸= 0 } , φi : [x0 : · · · : xn] 7−→
1
xi
(x0, . . . , x̂i, . . . , xn) , (1.30)

from Ui to the affine space Rn with coordinates (yi,0, . . . , ŷi,i, . . . , yi,n). In other words, the charts
put on each Ui the coordinate yi,a =

xa
xi

. The Ui’s form an open cover of Pn(R), and the charts are
homeomorphisms from Ui to Rn. Furthermore, at the intersection

Ui ∩Uj =
{
[x0 : · · · : xn] ∈ Pn(R)

∣∣ xi ̸= 0 and xj ̸= 0
}

, (1.31)

1Pn(R) is equipped with the quotient topology defined through the projection map π : Rn+1 \ {0} → Pn(R). That
is, a set U ⊆ Pn(R) is open if and only if π−1(U) ⊆ Rn+1 \ {0} is open.
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we have coordinates

φi(Ui ∩Uj) =
{
(yi,0, . . . , ŷi,i, . . . , yi,n) ∈ Rn ∣∣ yi,j ̸= 0

}
,

φj(Ui ∩Uj) =
{
(yj,i, . . . , ŷj,j, . . . , yj,n) ∈ Rn ∣∣ yj,i ̸= 0

}
,

(1.32)

and transition maps φi,j given by

φi,j : (yi,0, . . . , ŷi,i, . . . , yi,n) 7−→ (yj,0, . . . , ŷj,j, . . . , yj,n) =
1

yi,j
(yi,0, . . . , ŷi,i, . . . , yi,n) . (1.33)

This is a consequence of the relation yj,a =
xa
xi

= xa
xi
· xi

xj
=

yi,a
yi,j

. In other words, the transition map
is the multiplication by 1/yi,j, which is a smooth function in the domain of definition.

Exercise 1.7. Consider an open set U ⊆ Rn and a smooth function f : U → Rm. Show that the graph of
f , that is

Γ f = { (x, y) ∈ U ×Rm | y = f (x) } (1.34)

is a smooth manifold of dimension n.

A natural approach to creating interesting manifolds within subsets of Euclidean space involves
examining level sets of functions. For instance, considering the function f (x, y) = x2 + y2, we
can view the unit circle as the level set f−1(1). Another illustration is provided by the function
g(x, y) = xy and its level set g−1(1), which forms a hyperbola. However, the level set g−1(0) is
the union of the x- and y-axes, and it cannot be endowed with the structure of a smooth manifold.
This is because no neighbourhood of the origin can be homeomorphic to an open set in R.

The question of which level sets exhibit the structure of a manifold finds its solution in this
classical theorem from analysis.

Theorem 1.14 (Implicit function theorem). Let F : Rn → Rm be a smooth function, and x ∈ Rn such
that the Jacobian matrix JacF(x) is a surjective linear function. Say F(x) = c. Then there exist:

• a neighbourhood Ax ⊆ Rn of x,
• an open set Vx ⊆ Rn−k and a smooth function fx : Vx → Rm,

such that F−1(c) is locally in Ax the graph Γ fx of the function fx. In other words, F−1(c) ∩ Ax = Γ fx .

The implicit function theorem conveys a fundamentally intuitive idea: at a point x ∈ Rn, if there
exist m coordinates where the determinant of the matrix of corresponding partial derivatives is
non-zero, then locally around x you can select the remaining n−m coordinates as local coordi-
nates for the level set of F passing through x. The projection onto these coordinates establishes
a local chart for the level set in the proximity of x. Keeping this in mind, the subsequent result
appears inherently natural.

Theorem 1.15. Let F : Rn → Rm be a smooth function and c ∈ Rm a regular value for F. That is, for
every point x ∈ F−1(c), the Jacobian matrix JacF(x) is a surjective linear function. Then F−1(c) is a real
smooth manifold of dimension n−m.
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Sketch of the proof. Firstly, observe that X := F−1(c) is second-countable and Hausdorff since it is
a subset of Rn with the induced topology.

Secondly, applying the implicit function theorem, we conclude that X is locally Rn−m. More
precisely, we define an atlas as follows: for each point x ∈ X, we find a neighbourhood Ux = X ∩
Ax of x in the level set. We also define the map φx : Ux → Vx as follows. By the implicit function
theorem, every point in Ux is of the form (p, fx(p)) for some p ∈ Vx; we set φx(p, f (p)) = p. In
other words, φx is the projection π : Rn → Rn−m. Then, φx is a homeomorphism with inverse
φ−1

x (p) = (p, fx(p)).

To conclude, we must show that the transition maps are smooth. Given two points x, x′ ∈ X such
that Ux ∩Ux′ ̸= ∅, the transition function is simply π ◦ fx′ , which is indeed smooth. □

1.2.2. Complex analytic manifolds. In our course we will not be concerned with smooth manifolds
but, rather, with complex manifolds. These are spaces that locally look like the complex affine
space Cn and the transition functions are holomorphic functions.

Definition 1.16. A real smooth complex analytic manifold of dimension n is a second-countable
and Hausdorff topological space X together with an open cover X =

⋃
i∈I Ui such that

• there exist homeomorphisms, called charts, φi : Ui → Vi with Vi ⊂ Rn Cn open;
• for all Ui, Uj with Ui ∩Uj ̸= ∅, the transition map

φi,j := φj ◦ φ−1
i : φi(Ui ∩Uj) −→ φj(Ui ∩Uj) (1.35)

is smooth holomorphic2.

Through the identification Cn ∼= R2n and the fact that every holomorphic function between
open subsets of Cn is a smooth function between open subsets of R2n, we deduce that every
n-dimensional complex analytic manifold is also a 2n-dimensional real smooth manifold.

Another important remark is that all methods of construction of real smooth manifolds discussed
in the previous section still holds when substituting real spaces by complex spaces and smooth
functions by holomorphic functions. In particular:

• graphs of holomorphic functions,
• level sets of regular values,

2A function f : U → Cm, with U ⊆ Cn open, is called holomorphic at a point z ∈ U if there exists a a complex
linear map L : Cn → Cm such that

f (z + h) = f (z) + L(h) + o(h) .

As a consequence, f is holomorphic as a function of each individual variables at z. Conversely, Hartog’s theorem
states that if f is holomorphic in each variable separately, then f is holomorphic. Hartog’s result has no real smooth
counterpart: it’s a feature of multivariable complex analysis.
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Figure 9. The Riemann surfaces of the square-root, the third-root, the logarithm,
and the arcsine.

are examples of complex analytic manifolds. For instance, the graph of the function z 7→ z2

discussed in relation to the square-root function is an example of a one-dimensional complex
analytic manifold. More examples stemming from multi-valued function are shown in figure 9.

Another example that generalise to the complex analytic world is that of projective spaces.

Example 1.17. Define the complex projective space of dimension n as

Pn(C) :=
{
(x0, . . . , xn) ∈ Cn+1 \ {0}

}/
∼ (1.36)

where (x0, . . . , xn) ∼ (x′0, . . . , x′n) if and only if ∃λ ∈ C× such that (x0, . . . , xn) = λ(x′0, . . . , x′n).
Mutatis mutandis, one can show that Pn(C) is a complex analytic space of dimension n.

Exercise 1.8 (Riemann sphere). Prove that any point [z0 : z1] ∈ P1(C) can be realised as [x1 : x2 + ix3],
with xi real, x2

1 + x2
2 + x2

3 = 1, and x1 ≥ 0. Deduce that P1(C), as a 2-dimensional real smooth manifold,
is the 2-dimensional sphere S2. For this reason, P1(C) is also called the Riemann sphere. Furthermore, we
will identify z ∈ C with the point [z : 1] ∈ P1(C), and the new point ∞ = [1 : 0] ∈ P1(C) will be called
the point at infinity.
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Figure 10. The cross-cap.

Exercise 1.9. Repeat the same argument for P2(R), and deduce that the real projective plane can be
identified with a hemisphere with boundary glued along the antipodal map (known as the cross-cap, see
figure 10).

Georg Friedrich
Bernhard Riemann

(1826–1866)

Finally, we can introduce the concept of Riemann surfaces, which
represent the most basic instances of complex analytic manifolds.

Definition 1.18. A Riemann surface is a connected, complex analytic,
1-dimensional manifold.

Remark 1.19. The connectedness assumption is not essential, and
different authors use different conventions. For instance, some au-
thors require Riemann surfaces to be compact. We will restrict our-
selves to compact Riemann surfaces in the next chapters, but for the
time being we allow non-compact objects.

The name “Riemann surface” is attributed to Riemann, who introduced the concept in his thesis
while investigating the problem of multi-valued functions. The term “surface” denotes that
every Riemann surface is indeed a surface, a real 2-dimensional manifold, but it encompasses
additional structure, specifically a complex structure. Perhaps a more fitting name would be
“complex curve”, but the terminology “Riemann surface” is now firmly established.

Examples of Riemann surfaces are the graphs of z 7→ zk, z 7→ ez, and z 7→ sin(z), which corre-
spond to the Riemann surface of the k-th root function, the logarithm, and the arcsine (figure 9).
Other (compact) examples include P1(C) and complex tori.

Exercise 1.10. Let ω1 and ω2 be two complex numbers which are linearly independent over R (that is,
they do not lie on the same real line through 0 in C). The set of all integral linear combinations of ω1 and
ω2, that is

Λ := Zω1 + Zω2 = { n1ω1 + n2ω2 ∈ C | n1, n2 ∈ Z } , (1.37)

is called a lattice. Define T := C/Λ, equipped with the quotient topology induced by the projection map
π : C→ T (see figure 11).
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•
0

•
ω1

•ω2
•ω1 + ω2

Figure 11. Identification of the torus with the gluing of a polygon.

• Consider the closed polygon P ⊂ C with vertices 0, ω1, ω2, ω1 + ω2. Show that for any z ∈ C, there
exists z0 ∈ P such that z− z0 ∈ Λ. Thus, π|P : P→ T is surjective. What happens at the sides of P?
• Deduce that every point in T has a neighbourhood homeomorphic to a disc in C, and that the transitions

maps are translations.

Since translations are holomorphic, we deduce that T is a Riemann surface.

Lecture 3

Mar 7
th, 2024 1.2.3. The geometer’s dream. Up to this point, we have explored two distinct notions of manifolds:

smooth real and complex analytic. However, there are numerous other categories of manifolds.
A real manifold can be ‘smooth’, ‘topological’, or ‘piece-wise linear’ (PL). The latter are defined
by requiring that transition maps should be homeomorphisms or PL maps between open subsets
of real space.

The primary aspiration of a geometer, and also an algebraist, is to classify objects within the
chosen category. To achieve this goal, it is crucial not only to possess a precise definition of the
objects in question but also to establish the concept of maps (or morphisms) between the given
objects.

Definition 1.20. Let X and Y be smooth real manifolds with atlases {(Ui, φi)} of dimensions n
on X and {(Vj, ψj)}of dimension m on Y. A map f : X → Y is described locally as follows. For
any point x ∈ X, let x ∈ Ui and f (x) ∈ Vj. Then we get a map

ψj ◦ f ◦ φ−1
i : φi(Ui) −→ ψj(Vj) (1.38)

between open subsets of Rn and Rm. The map f is called smooth if all its coordinate representa-
tions are smooth.

Clearly, ‘smooth’ can be substituted with ‘continuous’ or ‘PL’ if the manifolds in question are
topological or PL. Alternatively, in the complex analytic setting, it can be replaced by ‘holomor-
phic’. The crucial point is this: we now have a well-defined notion of morphism between the
selected objects, forming a category for topological manifolds (Top), PL manifolds (PL), smooth
manifolds (Diff), analytic manifolds (Hol), and so on. The classification problem stands out as a
key challenge in manifold theory. In its strongest form, it involves classifying all objects within
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the chosen category up to isomorphism. Isomorphism in the different categories are sometimes
called by different names: homeomorphisms in Top, PL homeomorphisms in PL, diffeomor-
phisms in Diff, and biholomorphisms in Hol.

Changing the category drastically changes the landscape of possibilities. For example, the valid-
ity of the generalised Poincaré conjecture3 depends on the specific setting:

• Top: true in all dimensions (Michael Freedman received the Fields Medal in 1986 for solving
the n = 4 case).
• PL: true in all dimensions other than 4; unknown in dimension 4, where it is equivalent to

the smooth version (Stephen Smale received the Fields Medal for his work in 1966).
• Diff: false generally, the first known counterexample is in dimension 7 (John Milnor received

the Fields Medal in 1962 for the counterexample). True in some dimensions including 1, 2, 3,
5, 6, 12, 56 and 61 (Grigori Perelman received the Fields Medal in 2006 and the Millennium
Prize in 2010, both declined, for his solution of the smooth 3-dimensional Poincaré conjecture).

Another example involves the classification of compact orientable topological surfaces compared
to compact Riemann surfaces, a topic that will be partially explored in the upcoming section.
While the former are categorised by a single discrete invariant, the genus, the latter are distin-
guished by the discrete genus parameter along with a continuous set of parameters forming a
moduli space.

In general, a fundamental tool in the classification problem is the concept of invariant: an object
(such as a number, a group, a polynomial, etc.) assigned to each object in the chosen category
that remains unchanged under isomorphism. Though the classification problem varies across
different categories, invariants prove to be useful throughout. For instance, a topological invari-
ant automatically becomes a smooth invariant. For this reason, gaining an understanding of
topological surfaces will be beneficial in comprehending Riemann surfaces, as discussed in the
next section.

1.2.4. Topology of compact surfaces. In this section, we refer to a real topological, compact, con-
nected surface simply as ‘surface’. The assumption of connectedness is relatively innocuous, as
the same arguments would apply to each connected component. Conversely, the assumption of
compactness is more drastic and can be regarded as a finiteness condition.

We already discussed some examples of surfaces in the previous section: S2, the sphere, and
P2(R), the real projective plane. Another example is the topological torus T := S1 × S1. A
remarkable theorem from algebraic topology states that these three examples are the building
blocks of all surfaces. Before stating the theorem, we have to introduce the concept of connected
sum.

3Every homotopy n-sphere (a closed n-manifold which is homotopy equivalent to the n-sphere) in the chosen
category (i.e. topological manifolds, PL manifolds, or smooth manifolds) is isomorphic in the chosen category (i.e.
homeomorphic, PL-homeomorphic, or diffeomorphic) to the standard n-sphere.
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S1 S2

S1#S2

Figure 12. Connected sum of surfaces.

Definition 1.21. Consider two surfaces S1 and S2. The connected sum S1#S2 is the surface ob-
tained by removing a small open disc from each of the two surfaces and identifying the two
boundaries via a homeomorphism.

Figure 12 illustrates the connected sum operation. Naturally, it is necessary to prove that the
operation is well-defined, meaning that the outcome remains consistent regardless of the choice
of discs and the choice of homeomorphism used to connect their boundaries. In other words,
it is a surface well-defined up to homeomorphism. One can prove that the connected sum is
associative, commutative, with identity being the sphere. More importantly, the connected sum
allows to produce a complete list of surfaces, solving the classification problem in this specific
case.

Theorem 1.22 (Classification of surfaces). Every connected, compact surface can be homeomorphically
identified with precisely one surface from the following list:

• orientable surfaces: T#g, the connected sum of g tori for g ≥ 0 (here T#0 = S2 is the sphere); g is called
the genus (see figure 13);
• non-orientable surfaces: P2(R)#m, the connected sum of m projective planes for m ≥ 1; m is called the

demigenus.

S2 T T#g

· · ·· · ·

Figure 13. Classification of compact, orientable surfaces.
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A brief sketch of the proof is as follows: to establish the above list, one demonstrates that any
surface can be represented by an identification polygon. Secondly, it is shown that all identifica-
tion polygons correspond to surfaces in the list. To prove that different elements of the list are
non-homeomorphic, two topological invariants–orientability and Euler characteristic–are intro-
duced. One can prove that no two different elements in the list share the same values for both
invariants. The rest of the section introduces these concepts.

Identification polygons. Let us start with some intuitive examples: the sphere (genus 0), the torus
(genus 1), and the real projective plane as the cross-cap (demigenus 1):

•

•

Sphere

•

•

•

•

Torus

•

•

Cross-cup

But how can we obtain connected sums? A simple example would be the following, realising
T#S2 ∼= T. The dashed line represents the connected sum.

•

••

•

••

∼=

•

•

•

•

The isomorphism is realised by “shrinking” the red part, the sphere, down to a single point. A
less trivial example is T#T, the 2-holed torus (that is, the surface S1 in figure 12).

•

•
•

•

•

•
•

•

A more systematic way of constructing glueings is given as follows. We define a set A of n letters
as an alphabet, and the set A ∪ Ā, formed by repeating each letter with a bar above it, is called a
doubled n-letter alphabet. Each pair (a, ā) is referred to as a pair of conjugate letters.
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Definition 1.23. An identification polygon with 2n sides is a word w constructed from a doubled
n-letter alphabet such that, for each pair of conjugate letters, w contains exactly two letters from
that pair (repetitions allowed). In particular, the word w must have exactly 2n letters.

As example, take A = { a, b }, so that A ∪ Ā = { a, b, ā, b̄ }. Examples of identification polygons
with 4 sides are

w1 = aābb̄ , w2 = aabb̄ , w3 = abāb̄ , w4 = abab̄ . (1.39)

Non-examples are, for instance: aaaa (there is no letter from the pair (b, b̄)) or aāab (there is only
one letter from the pair (b, b̄)).

An identification polygon w gives rise to a compact surface as follows. Consider a regular 2n-
gon and label its sides in a counter-clockwise manner to spell out the word w. Assign a counter-
clockwise orientation to each side for normal letters and a clockwise orientation for barred letters.
Subsequently, for every pair of equal or conjugate letters in the alphabet, align and identify the
two sides based on the specified orientation. A surface S that is homeomorphic to the resulting
surface is described as being represented by the identification polygon w.

Exercise 1.11. Which surfaces are represented by the identification polygons in equation (1.39)?

Connected sums of surfaces represented by identification polygons is easily realised as concate-
nation of words.

Lemma 1.24. If S1, S2 are surfaces represented by the polygons w1 and w2, then the surface S1#S2 is
represented by the polygon w1w2 (we are assuming that the two words use letters from different alphabets).

Exercise 1.12. Convince yourself that P2(R)#P2(R) is the Klein bottle, and prove using polygon identi-
fication that P2(R)#T ∼= P2(R)#3.

Exercise 1.13. Come up with a list of identification polygons that produce the list in theorem 1.22. Con-
vince yourself that any identification polygon gives a surface homeomorphic to one in the list.

Orientability and Euler characteristic. We are now armed to define two invariants that completely
characterise: orientability and Euler characteristic. Orientability is a general concept than can be
defined for any topological manifold. The easiest definition requires the manifold to be C1, but
an alternative definition can be given in the topological case using homology4.

Definition 1.25. A smooth manifold X is orientable if and only if it admits an atlas such that
all transition functions are orientation-preserving (i.e. the determinant of the Jacobian matrix is
positive in an open dense).

4In the topological setting, we say that a connected n-dimensional manifold X is orientable if and only if its n-th
singular homology group Hn(X, Z) is isomorphic to the integers Z. Intuitively, the n-th homology group of an n-
dimensional manifold measures ‘how many sides’ the manifold has. The integers are generated by two elements, ±1,
which reflects the intuitive idea that an orientable manifolds has two sides.
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An example of non-orientable surface is the projective plane P2(R). Another example is the Klein
bottle P2(R)#P2(R). One can show that a surface is non-orientable if and only if it contains an
open subset homeomorphic to a Möbius strip. The Möbius strip can be realised as the following
‘non-compact’ identification polygon.

•

•

•

•

∼=

As such, one can deduce that all surfaces of the form P2(R)#m are non-orientable. On the con-
trary, the sphere and the connected sum of g tori are orientable. In other words, orientability
distinguishes elements from the first and the second item of the list in the classification theo-
rem 1.22.

The second invariant, the Euler characteristic, can be defined for smooth manifolds (or more
generally, manifolds of finite CW-complex type). In the surface case, the definition reduces to the
historical definition by Euler, which implicitly was known already to Descartes around 1620.

Definition 1.26. A good graph on a surface S is a graph Γ on S such that:

• S \ Γ is homeomorphic to a disjoint union of open discs,
• edges only cross at vertices,
• no edge ends without a vertex.

For a given good graph Γ on S, the Euler characteristic is defined as

χS := |VΓ| − |EΓ|+ |FΓ| , (1.40)

where VΓ, EΓ, FΓ are the sets of vertices, edges and faces of Γ.

It can be shown that the Euler characteristic is independent of the choice of good graph.

Exercise 1.14. Prove that the Euler characteristic of T#g is 2− 2g. Prove that the Euler characteristic of
P2(R)#m is 2−m. Conclude that the genus and the demigenus uniquely characterise the surface within
the orientable and the non-orientable classes.

To sum up: isomorphism classes of compact connected topological surfaces are divided into two
classes (orientable/non-orientable), and both classes are labelled by an integer (genus/demigenus);
furthermore, each isomorphism class consists of a single element.
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2. Riemann surfaces: general theory

Lecture 4

Mar 14
th, 2024 2.1. Examples. In the previous chapter, we have introduce the concept of Riemann surfaces and

discussed a handful of examples:

• the complex plane C, and more generally any open subset U ⊆ C,
• the Riemann sphere P1(C),
• the tori C/Λ (a more detailed discussion will follow),
• graphs of functions, such as the Riemann surface of the square root,
• level sets of regular values of holomorphic functions of the form F : Cm → Cm−1 (also known

as affine curves if F is a polynomial).

We also understood how, in the compact case, every topological surfaces is uniquely characterised
by the orientability/non-orientability and the Euler characteristic. Since every Riemann surfaces
is a topological surface, it is natural to ask ourself: can we endow every compact topological
surface with a Riemannian structure?

As established in corollary 1.3, a holomorphic function preserves orientation when regarded as
a differentiable function from the real plane to itself. Given that all transition functions of a
Riemann surface are holomorphic, it follows that every Riemann surface is orientable. Conse-
quently, the real projective plane, the Klein bottle, and, more generally, every non-orientable
compact topological surface cannot be Riemann surfaces. Conversely, we have previously seen
that P1(C) is topologically a sphere, while C/Λ is topologically a torus. It can be shown that all
orientable compact topological surfaces can be endowed with a Riemannian structure.

On the other hand, not every bicontinuous function is biholomorphic. For example, every pair
of complex tori C/Λ and C/Λ′ are homeomorphic, since the homeomorphism class of a torus
consists of a single element. The natural question is: are C/Λ and C/Λ′ biholomorphic too? For
concreteness, consider the example of

Λ = Z + τZ and Λ′ = Z + τ̄Z . (2.1)

The map z 7→ z̄ is a homeomorphism between C/Λ and C/Λ′ (geometrically, it is the reflection
along the real axis), but it is not a holomorphic map! Complex tori given by different lattices
are not necessarily biholomorphic, but a characterisation can be given in accordance with the
following theorem.

Theorem 2.1 (The modular curve). The set of equivalence classes of complex tori is in one-to-one
correspondence with the upper-half plane H := {τ ∈ C | ℑ(τ) > 0}, quotient by the action of SL(2, Z):

H/SL(2, Z)
1 : 1−−−→ {C/Λ } /biholomorphism , [τ] 7−→ [C/(Z + τZ)] . (2.2)
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Figure 14. A fundamental domain for the quotient H/SL(2, Z). The arcs AB and
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The group SL(2, Z), called the modular group, is the group of 2× 2 matrices with integer coefficients and
determinant 1. Its action on the upper-half plane, called the modular action, is defined as(

a b
c d

)
.τ :=

aτ + b
cτ + d

. (2.3)

The set H/SL(2, Z), called the modular curve, is pictured in figure 14.

Exercise 2.1. The proof is left as a guided exercise.

• Let Λ, Λ′ ⊂ C be two lattices. Suppose ∃α ∈ C× such that αΛ ⊆ Λ′. Show that the map C → C,
z 7→ αz induces a holomorphic map C/Λ→ C/Λ′, which is biholomorphic if and only if αΛ = Λ′.
• Show that every torus C/Λ is isomorphic to a torus of the form T(τ) := C/(Z+ τZ), where τ ∈H.
• Suppose γ ∈ SL(2, C) and τ ∈ H. Let τ′ := γ.τ, according to the action defined in equation (2.3).

Prove that T(τ) and T(τ′) are isomorphic.

Remark 2.2. The one-to-one correspondence given in theorem 2.1 can be extended from a set
correspondence to a correspondence of topological spaces. Furthermore, both sides of the cor-
respondence can be endowed with a natural structure of 1-dimensional complex orbifolds, a
generalisation of manifolds where points exhibit symmetry. This elucidates the term ‘curve’ in
‘modular curve’: the set that parametrises complex tori forms a complex (orbi)curve. Addition-
ally, it resolves the classification problem for complex tori by characterising their equivalence
classes in terms of a well-understood geometric object. This case is much more difficult than the
topological case, where the set of homeomorphism classes of tori is a just single point. Here,
instead, we find a whole continuum of biholomorphism classes of complex tori.

The space H/SL(2, Z) is an example of a moduli space: a space that parametrises specific geo-
metric objects, while the space itself is naturally endowed with an intrinsic geometry. Another
familiar example is the projective space, which parametrises directions in a given real/complex
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vector space and is naturally endowed with a real-smooth/complex-analytic manifold structure.
Part of the classification problem of compact Riemann surfaces (beyond the genus 1 case) in-
volves understanding the spaces that classify their equivalence classes, that is, understand the
moduli space of genus g Riemann surfaces.

Other interesting examples of Riemann surfaces are affine plane curves, that is level sets of
polynomials in two variables.

Example 2.3 (Plane affine curves). For a given polynomial F ∈ C[z, w] with 0 as a regular value,
we denote the associated level set at Z(F) := F−1(0), also called smooth affine plane curve.‘’
Notice that the regular value assumption is equivalent to {p ∈ C2 | F(p) = ∂F

∂z (p) = ∂F
∂w (p) =

0} = ∅.

• Lines. For F(z, w) = az + bw + c and (a, b) ̸= (0, 0),

Z(F) =
{
(z, w) ∈ C2 ∣∣ az + bw = c

}
(2.4)

is a Riemann surface biholomorphic to C.
• The ‘complex circle’. Take F(x, y) = z2 + w2 − 1, and set

Z(F) =
{
(z, w) ∈ C2 ∣∣ z2 + w2 = 1

}
. (2.5)

Although the equation seems the same as that of a circle in the real plane, the Riemann
surface Z(F) is drastically different. Indeed, we can factorise the polynomial as F(z, w) =

(z + iw)(z− iw)− 1 and perform the change of variables (z, w) 7→ (u, v) = (z + iw, z− iw).
Thus, we can rewrite Z(F) as {(u, v) ∈ C2 | uv = 1}, that is a ‘complex hyperbola’. One can
check that the map{

(u, v) ∈ C2 ∣∣ uv = 1
}
−→ C \ {0} , (u, v) 7−→ u (2.6)

is an biholomorphism of complex manifolds. Hence, Z(F) ∼= C \ {0} as a Riemann surface.
This is an example of a smooth affine conic. A similar result holds for all smooth affine conics.

Other examples of compact Riemann surfaces arise when considering level sets of polynomials in
projective spaces (rather than affine spaces). The first problem, though, is that projective spaces
are quotients, so in order to obtained a well-defined level set we need to check that our definition
is independent of the choice of representatives. We will only focus on the plane case, although
the discussion can be easily generalised beyond the planar case.

Definition 2.4. A polynomial F ∈ C[z0, z1, z2] is called homogeneous of degree d if

F(λz0, λz1, λz2) = λd F(z0, z1, z2) (2.7)

for all λ ∈ C×.

Exercise 2.2. Let F ∈ C[z0, z1, z2]. Prove that the following are equivalent.

• F is homogeneous of degree d.
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• Every monomial in F has degree d.
• F satisfies the so-called Euler’s identity: z0

∂F
∂z0

+ z1
∂F
∂z1

+ z2
∂F
∂z2

= d · F.

For a homogeneous polynomial, the property of being zero or not depends only on the equiva-
lence class of (z0, z1, z2) in P2(C). Hence, the following definition is well-posed.

Definition 2.5. For a given homogeneous polynomial F ∈ C[z0, z1, z2] of degree d, define

Z(F) :=
{
[z0 : z1 : z2] ∈ P2(C)

∣∣ F(z0, z1, z2) = 0
}

. (2.8)

The set Z(F) is called a projective plane curve of degree d.

The main question is: are projective plane curves Riemann surfaces? The answer is yes, provided
that a ‘regular value’ condition is satisfied.

Proposition 2.6. Let F ∈ C[z0, z1, z2] be a homogeneous polynomial. Suppose that{
p ∈ C3 \ {0}

∣∣∣∣ F(p) =
∂F
∂z0

(p) =
∂F
∂z1

(p) =
∂F
∂z2

(p) = 0
}

= ∅ . (2.9)

Then Z(F) ⊂ P2(C) has a natural structure of compact Riemann surface. In this case, Z(F) is called a
smooth projective plane curve.

Proof. We first show that Z(F) is compact by showing that Z(F) is a closed subset of P2(C),
which is a compact topological space. To this end, consider the diagram

C3 \ {0} C

P2(C)

π

F

(2.10)

where π is the natural projection. By definition, Z(F) is a closed subset of P2(C) if and only
if π−1(Z(F)) is closed in C3 \ {0}. As π−1(Z(F)) = F−1(0) and the latter is closed (being the
inverse image of {0} ⊂ C under the continuous function F), we deduce that Z(F) is closed.
Notice that we did not used the smoothness assumption here.

To prove that Z(F) is a Riemann surface, it is sufficient to show that its intersection with any of
the charts of P2(C) is a Riemann surface (think about why that is true). Consider the chart

U = { [z0 : z1 : z2] | z0 ̸= 0 } . (2.11)

with coordinates φ([z0 : z1 : z2]) =
1
z0
(z1, z2) =: (w1, w2). Then the dehomogenisation of F with

respect to z2, defined as f (w1, w2) := F(1, w1, w2), satisfies

φ(Z(F) ∩U) = Z( f ) . (2.12)

Notice that Z(F) is a subset of the complex projective plane, while Z( f ) is a subset of the C.
From the relations

∂F
∂z1

(1, w1, w2) =
∂ f

∂w1
(w1, w2) ,

∂F
∂z2

(1, w1, w2) =
∂ f

∂w2
(w1, w2) , (2.13)
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and Euler’s identity, we conclude that equation (2.9) implies that 0 is a regular value for f .
Indeed, suppose by contradiction that there exists (w1, w2) ∈ C such that

f (w1, w2) =
∂ f

∂w1
(w1, w2) =

∂ f
∂w2

(w1, w2) = 0 . (2.14)

Then F(1, w1, w2) = 0, and ∂F
∂z1

(1, w1, w2) =
∂F
∂z2

(1, w1, w2) = 0. By Euler’s identity, we deduce that
∂F
∂z0

(1, w1, w2) = 0 as well, which contradicts equation (2.9). Hence, Z( f ) is a Riemann surface,
being the zero set of a polynomial at a regular value. A similar argument holds for the other
local charts of P2(C), thus proving the proposition. □

Remark 2.7 (Genus-degree formula). It can be shown that smooth projective plane curves are
connected. Since they are compact and orientable, by the classification theorem of surfaces they
must be topologically homeomorphic to a genus g surface. The main question is: can we compute
the genus in terms of the degree? The answer is yes:

g =
(d− 1)(d− 2)

2
. (2.15)

We will prove the genus-degree formula as a consequence of the Riemann–Hurwitz formula.

Example 2.8 (Conic). Consider the projective plane curve C := Z(F) of degree 2 defined by
F(z0, z1, z2) := z2

0 + z2
1 − z2

2. It is easy to check that F satisfies the smoothness condition, hence C
is a compact Riemann surface. Thanks to the genus-degree formula, we see that C has genus 0.

On the other hand, dehomogenising with respect to z2 we find the Riemann surface of the ‘com-
plex circle’: {

(w0, w1) ∈ C2 ∣∣ w2
0 + w2

1 = 1
}

, (2.16)

which is biholomorphic to C×. Dehomogenising with respect to z0 or z1 gives a ‘complex hy-
perbola’, which again is biholomorphic to C×. In other words, the projective curve C intersected
with the three charts of the projective plane gives three copies of C×. However, the Riemann
surface C is compact, and intuition suggests that it is the sphere obtained by compactifying C×.
Indeed, this is in accordance with the genus-degree formula.

The curve Z(F) is an example of a smooth conic (a conic is projective curves of degree 2). This
has to do with the fact that affine plane conics are obtained as plane sections of a cone: before we
identify all the points on a line through the origin, the solutions of F(z0, z1, z2) = z2

0 + z2
1− z2

2 = 0
in C3 give a cone, and slicing it with different planes just amounts to restricting the projective
curve Z(F) to different affine charts.

Example 2.9 (Fermat curve). Consider the projective plane curve of degree n ≥ 1, called Fermat
curve, defined by the homogeneous polynomial

F(z0, z1, z2) := zn
0 + zn

1 − zn
2 . (2.17)

It is easy to check that Z(F) is smooth, therefore of genus g = (n−1)(n−2)
2 . Fermat’s Last Theorem

states that there are no non-trivial integer solutions to the Fermat equation xn + yn = zn for n ≥ 3;
therefore, the Fermat curve has no non-trivial rational points for n ≥ 3. Fermat’s Last Theorem
is one of the biggest mathematical achievements of the 20th century, proved 358 years after it
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was conjectured thanks to the contribution of several mathematicians such as Sophie Germain,
Kummer, Shimura, Taniyama, Weil, Frey, Ribet, Taylor, and Wiles.

Example 2.10 (Elliptic curves). Lecture 5

Mar 21
st, 2024

Consider the projective plane curve E := Z(F) of degree 3, called
elliptic curve, defined by the homogeneous polynomial

F(z0, z1, z2) := z2
1z2 − (z0 − α1z2)(z0 − α2z2)(z0 − α3z2) (2.18)

with α1, α2, α3 ∈ C. It is easy to check that, if the αi’s are distinct, E is smooth. Hence, E has
genus 1. It can be shown that elliptic curves are isomorphic to complex tori; such connection is a
very beautiful and classical story, and it will be partially explored in a future exercise.

Notice that complex tori have a natural addition operation induced by the complex sum in C.
That is, the operation

C/Λ×C/Λ −→ C/Λ , [z] + [w] := [z + w] (2.19)

is well defined. If we believe that elliptic curves are indeed complex tori, a natural question
arises: how is the addition defined for elliptic curves? The answer is very simple and geometric.
To start with, let us transform the elliptic curve in its Weierstraß normal form:

G(Z0, Z1, Z2) = Z2
1Z2 − Z3

0 − aZ0Z2
2 − bZ3

2 . (2.20)

This can be achieved through the linear transform (z0, z1, z2) 7→ (Z0, Z1, Z2) = (z0 +
1
3 (α1 + α2 +

α3)z2, z1, z2). Furthermore, the smoothness condition is equivalent to ∆ := −16(4a3 + 27b2) ̸= 0.
For an elliptic curve in the Weierstraß form, define the group law as follows.

• The identity element is O := [0 : 1 : 0].
• For a point P = [Z0 : Z1 : Z2] ∈ E, define −P := [Z0 : −Z1 : Z2]. Thanks to the symmetry of

the elliptic curve in Weierstraß form, we have −P ∈ E.
• If for a line ℓ ⊂ P2(C), the intersection ℓ ∩ E consists of:

– three distinct points P, Q, R, then P + Q + R = O (generic case);
– two distinct points P, Q, with ℓ tangent to E at Q, then P + Q + Q = O (tangent point);
– a single point P, then P + P + P = O (inflection point).

The group law is summarised in the following pictures, representing the real points of the deho-
mogenisation with respect to Z2. The first two drawings represent the generic case (in the second
picture, the third point of intersection is O); the second two drawings represent the tangency
case (in the fourth picture, the second point of intersection is O); the last picture represents the
inflection case.
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•P

•
Q

•
R

•−R

P + Q + R = O

•
P

•
Q

P + Q + O = O

•P

• Q

•−Q

P + Q + Q = O

•P

P + P + O = O

•
P

•
−P

P + P + P = O

It can be shown that the group law defined above is associative, commutative, with O being the
identity element.

Exercise 2.3 (The Puzzle of the Doctor of Physic þ). Find a positive rational solution (different from
the trivial solution {1, 2}) to the equation

x3 + y3 = 9 . (2.21)

This is a version of Fermat’s Last Theorem, with the right-hand side equal to 9 (rather than 1).

The question is a reformulation of the 20th puzzle from The Canterbury Puzzles and Other Curious
Problems (1907) by Henry Dudeney.

This Doctor, learned though he was, for “In all this world to him there was none like To
speak of physic and of surgery,” and “He knew the cause of every malady,” yet was he not
indifferent to the more material side of life. “Gold in physic is a cordial; Therefore he lovéd
gold in special.” The problem that the Doctor propounded to the assembled pilgrims was
this. He produced two spherical phials, as shown in our illustration, and pointed out that
one phial was exactly a foot in circumference, and the other two feet in circumference.

“I do wish,” said the Doctor, addressing the company, “to have the exact measures of two
other phials, of a like shape but different in size, that may together contain just as much
liquid as is contained by these two.” To find exact dimensions in the smallest possible
numbers is one of the toughest nuts I have attempted. Of course the thickness of the glass,
and the neck and base, are to be ignored.

In mathematical terms, the puzzle can be rephrased as follows. The Doctor has two spherical phials of
circumference 1 and 2 feet respectively, that is radii 1

2π and 1
π respectively. Hence, the total volume

contained in the two phials is 4
3 π( 1

8π3 +
1

π3 ) = 3
2π2 . The Doctor is asking for two more spherical phials

with the same total volume, but different rational circumferences. That is, he is looking for a pair of positive
rational numbers (x, y), different from (1, 2) and (2, 1) such that

4
3

π

(( x
2π

)3
+
( y

2π

)3
)
=

3
2π2 . (2.22)

Simplifying, we get to find a non-trivial positive rational solution to equation (2.21).
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� Hint. Notice that E = Z(z3
0 + z3

1 − 9z3
2) is a smooth projective plane curve of degree 3, hence an elliptic curve

with its group structure. Can you define the group law (even if E is not in Weierstraß form)? And can you use the

group law to find new rational solutions, starting from the trivial ones?

2.2. The Riemann–Hurwitz formula. Consider a non-constant holomorphic map f : X → Y
between Riemann surfaces. For any point x ∈ X, the local form of holomorphic functions
(lemma 1.10) guarantees that there exists local coordinate (z, w) centred at (x, f (x)) such that
the function f has the form

z 7−→ zk (2.23)

for some integer k > 0. This means that there exist neighbourhoods U of x and V of f (x) and
homeomorphisms φ : U → U′ ⊆ C, ψ : V → V ′ ⊆ C, such that φ(x) = 0, ψ( f (x)) = 0, and

(ψ ◦ f ◦ φ−1)(z) = zk . (2.24)

Exercise 2.4. Prove that the integer k does not depend on the choice of local coordinates.

Definition 2.11. With the notation above, define the multiplicity (or ramification index) of the
map f at the point x to be

µx( f ) := k . (2.25)

A function f with µx( f ) = 1 is called unramified at x, and ramified if µx( f ) > 1. In the latter
case, x is called a ramification point. The ramification locus Ram f is the subset of X consisting of
all ramification points. If x is a ramification point, then f (x) ∈ Y is called a branch point. The
branch locus Brnch f is the subset of Y consisting of all branch points.

Geometrically, the multiplicity tells you how many distinct solutions there are to the equation
f (x) = y for fixed y. If locally the map is of the form z 7→ zk, it is clear that w = 0 is a bad point
for the equation zk = w: only z = 0 is a solution, while for w ̸= 0 there are k distinct solutions.
Intuitively, a ramification point is where the local number of solutions to f (x) = y has suddenly
dropped, and the ramification index counts exactly by how much such number has dropped.

Example 2.12. Consider the map f : C→ C defined by z 7→ z2. The only ramification point is the
origin, with multiplicity equal to 2.
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The above map can be extended to a map between complex projective lines: f : P1(C) → P1(C),
defined by [z0 : z1] 7→ [z2

0 : z2
1]. In any of the local charts U0 or U1 of the complex projective

line, the map is simply z 7→ z2. Hence, the ramification points are [0 : 1] and [1 : 0], both of
multiplicity equal to 2. Thinking about P1(C) as the one-point compactification of C, we can say
that z 7→ z2 is ramified at the origin and at infinity (see figure 15).

Example 2.13. Let E be an elliptic curve, that is E = Z(F) with F(z0, z1, z2) = z2
1z2 − (z0 −

α1z2)(z0 − α2z2)(z0 − α3z2) and distinct αi’s. Consider the map g : E→ P1(C) defined by[z0 : z1 : z2] 7−→ [z0 : z2] if z2 ̸= 0 ,

[0 : 1 : 0] 7−→ [0 : 1] .
(2.26)

The map is well-defined, as the point [0 : 1 : 0] is the only point with z2 = 0. The structure of the
map is perhaps more transparent after dehomogenisation with respect to z2. In the corresponding
affine chart of P2(C), the elliptic curve is of the form

y2 = (x− α1)(x− α2)(x− α3) , (2.27)

and the map g sends (x, y) 7→ x. It is then clear that a generic point has multiplicity 2, since
we can use y =

√
(x− α1)(x− α2)(x− α3) as local coordinate and the map is then a square. It

is also clear that x = α1, α2, α3 are ramification points of multiplicity 2. In the projective plane
embedding of E, they correspond to the points pi := [αi : 0 : 1] ∈ E. As in the previous example
though, we have to be careful: dehomogenisation with respect to z2 loses information for the
point ∞ := [0 : 1 : 0]. One can check that ∞ is indeed a ramification point of multiplicity 2. See
figure 15 for a pictorial representation of the map.

Let us turn our attention to compact Riemann surfaces. In this case, holomorphic functions enjoy
several useful properties.

Lemma 2.14. Let f : X → Y be a non-constant holomorphic function between Riemann surfaces with X
compact.

(1) Then f is surjective. Hence, Y is compact.
(2) The fibres f−1(y) and Ram f are finite sets.

Proof. Let us start with the first property. By the open mapping theorem (theorem 1.4), a non-
constant holomorphic map is open. This is a local statement, so f : X → Y is open. Furthermore,
f is closed because X is compact and Y is Hausdorff5. Hence, f (X) is clopen in Y. The only
clopen subsets of a connected space (recall that a Riemann surface is connected by definition) are
the empty set and the whole space. Since f (X) is non-empty, we conclude that f (X) = Y, that is
f is surjective. We also conclude that Y is compact, since it is the image of X that is compact.

5Recall the closed/proper mapping theorem: every continuous function f : X → Y from a compact space X to a
Hausdorff space Y is closed and proper (i.e. it sends closed sets to closed sets, and the preimage of compact sets are
compact).
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•

•

0

∞

•

•
p1

• p2

•
p3

•
∞

•
•
•

Figure 15. Left: the map f : P1(C) → P1(C), extension of z 7→ z2. The domain
is the outermost white sphere; the codomain is the innermost blue sphere; the
map is the projection from the outermost to the innermost sphere. Notice the two
ramification points 0 and ∞.
Right: the map g : E → P1(C). Again, the domain is the outermost surface, a
torus; the codomain is the innermost sphere. Notice the four ramification points
p1, p2, p3 and ∞.

As for the second property, consider the fibre f−1(y). From the local form of holomorphic
functions, it is clear that all fibres are discrete6. Furthermore, f is proper because X is compact
and Y is Hausdorff, so all fibres are compact and discrete. Since compact discrete spaces are
finite, we conclude. The same argument holds for Ram f . □

Lecture 6

Mar 28
th, 2024An immediate corollary, often referred to as Liouville’s theorem, asserts that the only holomor-

phic functions from a compact Riemann surface X to a non-compact Riemann surface Y are the
constant functions. Denoting by O(X) the C-algebra of holomorphic functions on X, that is

O(X) := { f : X → C | f is holomorphic } , (2.28)

we then obtain the following result.

Corollary 2.15 (Holomorphic functions on compact Riemann surfaces). The space of holomorphic
forms on a compact Riemann surface X is 1-dimensional:

O(X) ∼= C . (2.29)

Remark 2.16 (‘How many functions are out there?’). We can think about the above theorem as
an answer to ‘how many holomorphic functions are there on a compact Riemann surface?’. The
answer is: there is only one linearly independent holomorphic function, namely the constant

6A subset D ⊂ X is discrete if every point in D has a neighbourhood in X that contains no other points of D.
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function 1. This is in contrast with the smooth case: thanks to the existence of bump functions,
it is possible to show that the vector space of real smooth functions f : M→ R on any (compact)
real n-manifold is infinite dimensional. In the next sections, we will generalise the above result
by relaxing the holomorphicity condition, counting meromorphic functions on compact Riemann
surface. The result will still be an finite dimensional vector space, whose dimension is given by
the celebrated Riemann–Roch formula.

We are now armed to define the most important invariant of holomorphic functions between
compact Riemann surfaces: the degree.

Theorem 2.17 (Degree of holomorphic functions). Let f : X → Y be a non-constant holomorphic
function between compact Riemann surfaces. The number of points in the fibre, counted with multiplicity,
is constant:

d := ∑
x∈ f−1(y)

µx( f ) is independent of y ∈ Y. (2.30)

The positive integer d is called the degree of f , denoted deg( f ). For constant functions, the degree is set
to be zero.

Proof. Fix a point ȳ ∈ Y, and let f−1(ȳ) = {x̄1, . . . , x̄n}. By appropriately restricting local charts
and and changing variables, we can find disjoint neighbourhoods Ui of x̄i and V of ȳ such that
f−1(V) ⊂ U1 ⊔ · · · ⊔Un and locally f is expressed as z 7→ zki around x̄i. In this case, the degree
at ȳ is given by d := k1 + · · ·+ kn.

We can now show that the function

Y −→ Z , y 7−→ d(y) := ∑
x∈ f−1(y)

µx( f ) (2.31)

is constant on V. For any y ∈ V, f−1(y) ⊂ U1 ⊔ · · · ⊔Un where we have a local description of the
function as z 7→ zki on Ui. In this case, the fibre intersected with Ui contains

• one point of multiplicity ki if the point corresponds to 0,
• ki point of multiplicity 1 otherwise.

In any case, the sum of points with multiplicity is d(y) = k1 + · · ·+ kn = d. This proves that d(y)
is locally constant, and therefore globally constant due to the connectedness of Y. □

The general philosophy is that, when counting properly, magic things happen. In this case
‘counting properly’ means counting elements in the fibres according to their multiplicity. By
doing so, the total number is constant! The theorem also gives a formula for the cardinality of
the fibres. Indeed, the equation d = ∑x∈ f−1(y) µx( f ), valid for any y ∈ Y, can be rearranged as

| f−1(y)| = d− ∑
x∈ f−1(y)

(
µx( f )− 1

)
. (2.32)
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The manipulation is legit, since fibres are always finite. In particular, if y is not a branch point,
| f−1(y)| = d.

Remark 2.18. If f : X → Y is a degree 1, non-constant holomorphic map between Riemann
surfaces, then f is a biholomorphism. Indeed, f is surjective, and degree 1 means that f is also
injective. A bijective holomorphic map is automatically a biholomorphism, thank to the open
mapping theorem.

In subsection 1.2.4, we introduced the concept of genus, a topological invariant for any connected
compact surface. Despite its topological nature, the genus is closely intertwined with the holo-
morphic structure of a Riemann surface, as highlighted in one of the most significant examples:
the Riemann–Hurwitz formula.

Adolf Hurwitz
(1859–1919)

Theorem 2.19 (Riemann–Hurwitz formula). Let f : X → Y be a holo-
morphic map of degree d between compact Riemann surfaces of genus gX

and gY respectively. Then

2gX − 2 = d(2gY − 2) + ∑
x∈Ram f

(
µx( f )− 1

)
. (2.33)

Proof. First, notice that the Riemann–Hurwitz formula can be re-
stated in terms of Euler characteristics as

χX = d χY − ∑
x∈Ram f

(
µx( f )− 1

)
. (2.34)

As the Euler characteristic is defined in terms of good graphs, a
natural strategy is to choose a suitable good graph on Y and “lift” it
to a good graph on X which we use to compute. A suitable choice of
good graph ΓY in Y is such that Brnch f ⊆ VΓY . We define the graph
ΓX to be the pullback of ΓY via f , that is ΓX := f−1(ΓY) with the natural graph structure. It is
not hard to check that ΓX is indeed a good graph in X. Furthermore, since the branch locus is
contained in VΓY , we deduce from equation (2.32) the relations |EΓX | = d |EΓY | and |FΓX | = d |FΓY |.
On the other hand, if y ∈ VY is a vertex we can still use equation (2.32) to get

|VΓX | = ∑
y∈VΓX

| f−1(y)| = d |VΓY | − ∑
y∈VΓX

∑
x∈ f−1(y)

(
µx( f )− 1

)
= d |VΓY | − ∑

x∈Ram f

(
µx( f )− 1

)
. (2.35)

All together, we find

χX = |VΓX | − |EΓX |+ |FΓX |

= d |VΓY | − ∑
x∈Ram f

(
µx( f )− 1

)
− d |EΓY |+ d |FΓY |

= d χY − ∑
x∈Ram f

(
µx( f )− 1

)
.

(2.36)

This concludes the proof. □
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The Riemann–Hurwitz formula has several immediate consequences.

Exercise 2.5. Let f : X → Y be a non-constant holomorphic map between compact Riemann surfaces.

• Show that gX ≥ gY.
• Suppose that both X and Y have genus 1. Conclude that f , must be unramified.
• Suppose that Y = P1(C) and f is unramified. Conclude that X is biholomorphic to P1(C).
• Show that if gX = gY ≥ 2, then X and Y are biholomorphic.

In general, the Riemann–Hurwitz formula imposes a condition on the genera of the source and
target, the degree of the map, and the type of ramification points it can have.

Let us observe the formula in action with the examples considered previously.

Example 2.20. The degree of the maps

P1(C) P1(C) E P1(C)

[z0 : z1] [z2
0 : z2

1] [z0 : z1 : z2] [z0 : z2]

f g

(2.37)

from examples 2.12 and 2.13 is 2 in both cases. As a sanity check, let us verify the Riemann–
Hurwitz formula (assuming that E has genus one). The first map has two ramification points,
0 = [0 : 1] and ∞ = [1 : 0], both of multiplicity 2. The second map has four ramification points,
say p1, p2, and p3 (corresponding to the values αi), and ∞ = [0 : 1 : 0], all of multiplicity 2. Thus,
we find

2gP1(C) − 2︸ ︷︷ ︸
=−2

= d f
(
2gP1(C) − 2

)︸ ︷︷ ︸
=−4

+
(
µ0( f ) + µ∞( f )− 2

)︸ ︷︷ ︸
=+2

(2.38)

in the first example, and

2gE − 2︸ ︷︷ ︸
=0

= dg
(
2gP1(C) − 2

)︸ ︷︷ ︸
=−4

+
(
µp1(g) + µp2(g) + µp3(g) + µ∞(g)− 4

)︸ ︷︷ ︸
=+4

(2.39)

Exercise 2.6. Consider the meromorphic function on C given by f (z) = z3

1−z2 . Can you define a map
F : P1(C) → P1(C) that equals f in the affine chart { [z : w] | w ̸= 0 }? Show that F has degree 3, find
its ramification points, and verify the Riemann–Hurwitz formula in this case.

Exercise 2.7 (Fermat’s Last Theorem for polynomials). Let F, G, H ∈ C[z, w] be non-constant, co-
prime, homogeneous polynomials such that Fn + Gn = Hn. Show that n ≤ 2.

As promised, we can now prove the genus-degree formula for smooth projective plane curves.
We will assume the validity of Bézout’s theorem, a classical theorem from algebraic geometry.

Theorem 2.21 (Bézout’s theorem). Suppose that C1 and C2 are two plane projective curves of degree
d1 and d2 respectively that do not have a common component (in other words, C1 and C2 are defined by
polynomials without common divisor of positive degree). Then the total number of intersection points of
C1 and C2, counted with their multiplicities, is equal to d1 · d2.
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Figure 16. Albert Einstein, Adolf Hurwitz and his daughter Lisbeth Hurwitz,
Zürich, August 1913. Photo credit: ETH Library.

C ℓ

•x0

•
x1

•
f (x1)

• x2

•
f (x2)

Theorem 2.22 (Genus-degree formula). Let C ⊂ P2(C) be a smooth
projective plane curve of degree d. Its genus is given by

gC =
(d− 1)(d− 2)

2
. (2.40)

Proof. Consider a general point x0 ∈ P2(C), a generic line ℓ ⊂
P2(C), and the projection from f : C → ℓ ∼= P1(C). It can be
shown that f is holomorphic, so a natural question is: what is the degree of f ? For y ∈ ℓ, the
fibre f−1(y) consists of all point in the intersection of C with the line passing through x0 and y:

f−1(y) = line(x0, y) ∩ C . (2.41)

As the line has degree 1 and C has degree d, the total number of points, counted with multiplicity,
is equal to d. Moreover, the ramification points are exactly those x ∈ C such that line(x0, x) is the
tangent line TxC to C at x. Since x0 is generic, one can show that every line passing through x0 is
tangent to C with multiplicity at most 2. Thus,

∑
x∈Ram f

(
µx( f )− 1

)
= |Ram f | = | { x ∈ C | TxC passes through x0 } | . (2.42)

Let F be the polynomial defining the curve C. The tangent line to C at x is given by the equation

TxC =

{
[z0 : z1 : z2] ∈ P2(C)

∣∣∣∣ ∂F
∂z0

(x)z0 +
∂F
∂z1

(x)z1 +
∂F
∂z2

(x)z2 = 0
}

. (2.43)

Writing x0 = [a : b : c], we find that the conditions x ∈ C and TxC passing through x0 are simply

{ x ∈ C | TxC passes through x0 } = { F(x) = 0 } ∩
{

∂F
∂z0

(x)a +
∂F
∂z1

(x)b +
∂F
∂z2

(x)c = 0
}

.

(2.44)
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The polynomial F has degree d, while its derivative has degree d − 1. By Bézout’s theorem,
the number of intersection points is then d(d− 1). To conclude, we apply Riemann–Hurwitz to
obtain

2gC − 2 = d
(
2gℓ − 2

)
+ ∑

x∈Ram f

(
µx( f )− 1

)
= −2d + d(d− 1) , (2.45)

and the genus-degree formula follows. □
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3. Meromorphic functions and divisors

In the first chapter, we have seen how meromorphic functions naturally show up when studying
holomorphic functions. The main instance is Cauchy’s integral formula: the value of a holomor-
phic function (and its derivatives) can be expressed as a contour integral of a meromorphic one.
It is then natural to extend the study of holomorphic functions from C to Riemann surfaces.

From now onwards, we denote the Riemann sphere P1(C) simply as P1. More generally, we
denote the complex projective space Pn(C) as Pn.

3.1. Meromorphic functions. Recall the definition of meromorphic functions on an open set
U ⊆ C: f is meromorphic if, for every point z0 ∈ U, there exists k ≥ 0 such that (z− z0)k f (z)
is holomorphic at z0 but (z − z0)k−1 f (z) is not. If k = 0, the function is holomorphic at z0; if
k > 0, we say that f has a pole of order k at z0. Notice that, since being holomorphic at a point
z0 implies holomorphicity in a neighbourhood, we deduce that poles must be isolated points.

It is easy to check that the set of meromorphic functions on U, denoted M(U), is a field. For
f ∈M(U) not identically zero and a fixed point z0 ∈ U, we have the Laurent series expansion

f (z) =
∞

∑
n=m

an(z− z0)
n , am ̸= 0 , (3.1)

Figure 17. Meromorphic functions can be visualised by means of two techniques,
2d colouring and 3d colouring. In both cases, the argument arg( f (z)) corresponds
to a color on the color wheel: red for 0, lime for π

2 , cyan for π, violet for 3π
2 . In

the 2d colouring, the module | f (z)| is represented via saturation: black is a zero,
white is a pole. In the 3d colouring, the module | f (z)| is represented on the z-axis.
Above, the two representations of the function f (z) = z2+1

z2−1 .
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for some m ∈ Z. Define the order of f at z0 as

ordz0( f ) = m . (3.2)

In accordance with our previous definition, we say that f has a zero of order m if m > 0, and it
has a pole of order −m if m < 0. We also set ordz0( f ) = ∞ for f ≡ 0. As a consequence, we get a
map

ordz0 : M(U) −→ Z∪ {∞} . (3.3)

Exercise 3.1. Prove that ordz0 : M(U)→ Z∪ {∞} is a discrete valuation, that is:

• ordz0( f · g) = ordz0( f ) + ordz0(g),
• ordz0( f + g) ≥ min { ordz0( f ), ordz0(g) },
• ordz0( f ) = ∞ if and only if f = 0.

•
∞

•
0

P1
Notice that a meromorphic function f on U, sometimes denoted
as f : U 99K→ C, is not strictly speaking a function. Near a pole,
a meromorphic function is unbounded, ‘taking’ the value ∞ at
pole. Thinking about C ∪ {∞} as the Riemann sphere P1, it is
then tempting to consider a meromorphic function on U as a holo-
morphic function to P1. This is indeed the case. To simplify the
notation, set

0 = [0 : 1] ∈ P1 and ∞ = [1 : 0] ∈ P1 (3.4)

for the point at zero and infinity on the Riemann sphere.

Lemma 3.1. There is a one-to-one correspondence between meromorphic functions f : U 99K→ C and holo-
morphic functions F : U → P1 that are not constantly ∞. Furthermore:

• zeros of f corresponds to F−1(0), poles of f corresponds to F−1(∞),
• ordz0( f ) = µz0(F) if F(z0) = 0, and ordz0( f ) = −µz0(F) if F(z0) = ∞.

Proof. We restrict ourselves to the case finitely many poles. This would correspond to finitely
many points on the fibre over ∞, which is automatic when we are going to replace U by a
compact Riemann surface. This said, denoted by z1, . . . , zn the poles of f , with orders k1, . . . , kn.
Then

g(z) =

(
n

∏
i=1

(z− zi)
ki

)
f (z) (3.5)

is holomorphic and non-vanishing at the zi’s. Moreover, the zeros of f correspond to the zeros
of g with the same multiplicity. Define

F : U −→ P1 , z 7−→
[

g(z) :
n

∏
i=1

(z− zi)
ki

]
. (3.6)

The function F is holomorphic (being g(z) and ∏n
i=1(z− zi)

ki on the two charts of P1). Moreover:
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• points on the fibre over 0 correspond to zeros of g, which in turn correspond to zeros of f ,
• points on the fibre over ∞ correspond to zeros of ∏n

i=1(z− zi)
ki , that is to poles of f .

The correspondence of orders/multiplicity also follows. Conversely, given a holomorphic func-
tion F : U → P1 with a finite fibre over ∞, we must have F(z) = [g1(z) : g2(z)∏n

i=1(z − zi)
ki ]

with g1 holomorphic and non-vanishing at the zi’s, and g2 holomorphic and nowhere vanishing.
Setting f (z) = g1(z)

g2(z)∏n
i=1(z−zi)

ki
, we have the thesis. Happy

Easter Break!

□

Lecture 7

Apr 11
th, 20243.1.1. Meromorphic functions on Riemann surfaces. Thanks to the above characterisation, we can

now define meromorphic functions on arbitrary Riemann surfaces.

Definition 3.2. A meromorphic function on a Riemann surface X is a holomorphic function
f : X → P1 that is not constantly ∞. Denote the field of meromorphic functions on X byM(X),
and the subalgebra of holomorphic functions by O(X).

For a meromorphic function not identically zero, set

ordx( f ) :=


µx( f ) if f (x) = 0 ,

−µx( f ) if f (x) = ∞ ,

0 otherwise.

(3.7)

We say that x is a zero of order k if ordx( f ) = k > 0, a pole of order k if ordx( f ) = −k < 0.
A zero or pole is called simple, double, triple, etc. if it is of order 1, 2, 3, etc. Again, the map
ordx : M(X)→ Z∪ {∞} is a discrete valuation (setting ordx( f ) := ∞ for f ≡ 0).

The next result states that for a meromorphic function on a compact Riemann surface the number
of zeros equals the numbers of poles (if counted with multiplicity).

Lemma 3.3 (Functions: #zeros = #poles). Let X be a compact Riemann surface, f a non-constant
meromorphic function. Then

∑
x∈X

ordx( f ) = 0 . (3.8)

Moreover, f has at least one zero and at least one pole.

Proof. First, the sum is well-defined since the only non-trivial contributions come from the fibres
over 0 and ∞, which are finite as X is compact. Moreover,

∑
x∈X

ordx( f ) = ∑
x∈ f−1(0)

ordx( f ) + ∑
x∈ f−1(∞)

ordx( f )

= ∑
x∈ f−1(0)

µx( f )− ∑
x∈ f−1(∞)

µx( f )
(3.9)

and the sum is zero since both summands equal deg( f ). To conclude, recall that a non-constant
holomorphic function with compact source is surjective. Hence, there exists at least one zero and
at least one pole. □
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3.1.2. Meromorphic functions on the Riemann sphere and the torus. Let us explore the case of mero-
morphic functions on our two main examples of compact Riemann surfaces: the Riemann sphere
and the complex tori. For the Riemann sphere, meromorphic functions can be easily classified.

Exercise 3.2. Prove that all meromorphic on P1 are of the form [z : w] 7→ [F(z, w) : G(z, w)] where
F, G ∈ C[z, w] are homogeneous polynomials of the same degree and no common factors.

As for the torus, the classification is more complicated but extremely beautiful. We start by
noticing that a meromorphic function on a torus C/Λ is the same as a Λ-periodic meromorphic
function on C. That is, a holomorphic function f : C→ P1 such that

f (z) = f (z + ω1) = f (z + ω2) ∀z ∈ C , (3.10)

where ω1, ω2 are the generators of the lattice.

This said, since meromorphic functions on compact Riemann surfaces have at least a pole, we
can start by considering the case of simple poles.

Exercise 3.3 (Weierstraß gap theorem for the torus). Assume f : C → P1 is a Λ-periodic function
with no poles on the boundary of the closed polygon P ⊂ C with vertices 0, ω1, ω2, ω1 + ω2 (the
fundamental domain). Show that the sum of the residues of all poles of f inside P is zero. Conclude that
no such f can have a unique simple pole in P.

Karl Theodor Wilhelm
Weierstraß
(1815–1897)

Since meromorphic functions on tori with a single simple pole can-
not exist, let us consider the case of a single double pole. The sim-
plest Λ-periodic function with a single double pole is the Weierstraß
℘-function, defined for z ̸∈ Λ as

℘(z) :=
1
z2 + ∑

ω∈Λ×

(
1

(z−ω)2 −
1

ω2

)
. (3.11)

Here Λ× := Λ \ {0}. Notice that the Weierstraß ℘-function depends
on the lattice Λ. For this reason, some authors denote it as ℘(z, Λ).

Proposition 3.4. The Weierstraß ℘-function defines a meromorphic func-
tion on the complex torus C/Λ with a single double pole at [0]. Up to trans-
lation, scaling and adding constant, ℘ is the unique meromorphic function
on C/Λ with a single double pole. It satisfies the differential equation

(℘′)2 = 4℘3 − g2 ℘− g3 , (3.12)

where g2 and g3 are the coefficients of the Laurent expansion of ℘ at zero:

℘(z) =
1
z2 +

1
20

g2 z2 +
1

28
g3 z4 + O(z6) . (3.13)

The proof is left as a guided exercise.
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Exercise 3.4 (Weierstraß ℘-function). Fix a lattice Λ = Zω1 + Zω2, and consider

℘(z) =
1
z2 + ∑

ω∈Λ×

(
1

(z−ω)2 −
1

ω2

)
, (3.14)

the Weierstraß ℘-function associated to Λ.

(i) Show that the series defining ℘ converges absolutely for every z ∈ C \ Λ and uniformly on compact
subsets of C \Λ.
� Hint. Use Weierstraß’s M-test.

(ii) Show that the derivative ℘′ is Λ-periodic and odd and that ℘ is even. Use this to show that ℘ is
Λ-periodic. Conclude that ℘ is a meromorphic function on C/Λ with a single double pole at [0].

(iii) Show that ℘′ has simple zeroes exactly at the points [ω1
2 ], [ω1

2 ], [ω1+ω2
2 ] ∈ C/Λ.

� Hint. Use that ℘′ satisfies ∑[z] ord[z](℘
′) = 0.

(iv) Prove that every Λ-periodic function f with double poles exactly at the elements of Λ is of the form
f (z) = a℘(z)+ b for a ∈ C×, b ∈ C. Hence, up to translation, scaling and adding constant functions,
℘ is the unique meromorphic function on C/Λ with a single double pole.
� Hint. Use Weierstraß’s gap theorem.

(v) Let the Laurent expansion of (the even function) ℘ around z = 0 be given by

℘(z) =
1
z2 + c +

1
20

g2 z2 +
1

28
g3 z4 + O(z6) . (3.15)

Show that c = 0 and that ℘ satisfies the differential equation

(℘′)2 = 4℘3 − g2 ℘− g3 . (3.16)

The differential equation satisfied by the Weierstraß ℘-function is reminiscent of the elliptic curve
defined as EΛ := Z(z2

1z2− z3
0 +

g2
4 z0z2

2 +
g3
4 z3

0) ⊂ P2. Indeed, the differential equation implies that
the following holomorphic map

C/Λ EΛ

[z] [℘(z) : 2℘′(z) : 1]

ϕ

(3.17)

is well-defined7. Here we set ϕ([0]) = [0 : 1 : 0].

Exercise 3.5 (Complex tori and elliptic curves þ). Show that EΛ is a smooth projective plane curve if
and only if ∆ := g3

2 − 27g2
3 ̸= 0. Conclude that ϕ is a biholomorphism.

Since every smooth elliptic curve can be brought to the Weierstraß form Z(z2
1z2− z3

0− az0z2
2− bz3

0)

with ∆ = −16(4a3 + 27b2) ̸= 0, we deduce that every elliptic curve is isomorphic to a complex
torus (and vice versa).

Moreover, one can show that ϕ is a group homomorphism. Let us check it in the easiest case:
consider two points P and Q on the elliptic curve different form the point at infinity and not the
inverse of each other. Say that P = ϕ([z]) and Q = ϕ([w]). We want to check that −(P + Q) =

7You can think of ϕ as the 2d version of the isomorphism R/2πZ→ S1, [t] 7→
(
sin(t), sin′(t)

)
=
(
sin(t), cos(t)

)
.
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Figure 18. The Weierstraß ℘-function on the hexagonal lattice.

ϕ(−[z + w]), and by definition −(P + Q) is the only other point on the elliptic curve that is
collinear to both P and Q. The collinearity condition is equivalent to show that the area formed by
the triangle defined by the points (℘(z), 2℘′(z)), (℘(w), 2℘′(w)), and (℘(−z− w), 2℘′(−z− w))

is zero, which in turn is equivalent to

det

 ℘(z) 2℘′(z) 1
℘(w) 2℘′(w) 1

℘(−z− w) 2℘′(−z− w) 1

 = 0 . (3.18)

This is a consequence of a more general result that holds for meromorphic functions of complex
tori, that can be interpreted as a special case of the Abel’s theorem.

Proposition 3.5 (Abel’s theorem for the torus). Let f : C/Λ → P1 be a non-constant meromorphic
function. Then

∑
x∈C/Λ

ordx( f ) · x = [0] . (3.19)

Here the sum is intended according to the group law on C/Λ.

Proof. Without loss of generality, we can assume that the zeros and poles are located away from
the boundary ∂P of fundamental domain (if not, we can simply shift). Consider now the mero-
morphic function z f ′(z)

f (z) defined in a neighbourhood of P. By the residue theorem, we have

1
2πi

∮
∂P

z
f ′(z)
f (z)

dz = ∑
z0 pole in P

Res
z=z0

z
f ′(z)
f (z)

. (3.20)

On the other hand, the function z f ′(z)
f (z) is designed so that it has poles at the zeros and poles of f .

Indeed, if f has a zero or a pole of order k at z0, then the Laurent expansion of f and f ′ reads

f (z) = ak(z− z0)
k + ak+1(z− z0)

k+1 + O
(
(z− z0)

k+2) ,

f ′(z) = k ak(z− z0)
k−1 + (k− 1) ak+1(z− z0)

k + O
(
(z− z0)

k+1) ,
(3.21)
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with ak ̸= 0. Writing z = z0 + (z− z0), we find

z
f ′(z)
f (z)

= k z0
1

z− z0
+ O(1) . (3.22)

We conclude that the residue of z f ′(z)
f (z) at a zero or pole z0 of f in P is ordz0( f ) · z0. Hence, the

right-hand side of the residue computation is ∑z ordz( f ) · z, where the sum is over all zeros and
poles of f in P. On the other hand, the integral along ∂P can be broken into four integrals along
the sides of ∂P. Using the double periodicity of f and f ′, and the fact that f ′(z)

f (z) = d log f (z)
dz , we

find
1

2πi

∮
∂P

z
f ′(z)
f (z)

dz =
1

2πi

[∫
[0,ω1]−[ω2,ω1+ω2]

z
f ′(z)
f (z)

dz−
∫
[0,ω2]−[ω1,ω1+ω2]

z
f ′(z)
f (z)

dz
]

= − 1
2πi

[
ω2

∫
[0,ω1]

f ′(z)
f (z)

dz−ω1

∫
[0,ω2]

f ′(z)
f (z)

dz
]

= − 1
2πi

[
ω2
(
log f (ω1)− log f (0)

)
−ω1

(
log f (ω2)− log f (0)

)]
.

(3.23)

The properties of the complex logarithm imply that log f (ω1)− log f (0) = −2πin2 and log f (ω2)−
log f (0) = 2πin1 for some integers n1, n2, so the contour integral equals n1ω1 + n2ω2. All to-
gether, the result of the residue theorem modulo Λ gives the thesis. □

Let us go back to our problem. Consider the meromorphic function on the torus defined by

f : [u] 7−→ det

℘(z) 2℘′(z) 1
℘(w) 2℘′(w) 1
℘(u) 2℘′(u) 1

 . (3.24)

As a function of [u] ∈ C/Λ, it has a pole of order 3 at [0] and no other poles (since the only
poles of ℘ and ℘′ are at [0], of order 2 and 3 respectively), and it has simple zeros at [u] = [z] and
[u] = [w]. From the above proposition, we deduce that f has a third simple zero at [u] = [−z−w],
since zeros and poles must satisfy ∑x∈C/Λ ordx( f ) · x = [0]. Hence, we find that f ([−z−w]) = 0,
which is the thesis.

Bonus section

(not required for
the exam)

3.1.3. More on elliptic functions. There are many more interesting facts about the Weierstraß ℘-
function, and more generally about meromorphic functions on the torus.

Elliptic integrals. The Weierstraß ℘-function is the inverse function of

z 7−→
∫ ∞

z

ds√
4s3 − g2s− g3

. (3.25)

Integrals of this form are called ‘elliptic integrals’, originally arising in connection with the prob-
lem of finding the arc length of an ellipse. This also explains the origin of the term ‘elliptic
curve’.

Field of meromorphic functions. The field of meromorphic functions on C/Λ with poles only at the
identity [0] is isomorphic to

C(x)[y]/(y2 − 4x3 − g2x− g3) , (3.26)
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with x 7→ ℘ and y 7→ ℘′.

Eisenstein series. As functions of the lattice Λ, the invariants g2 and g3 take the form

g2(Λ) = −60 ∑
ω∈Λ×

1
ω4 , g3(Λ) = −140 ∑

ω∈Λ×

1
ω6 . (3.27)

They are part of a bigger family, called Eisenstein series:

Gk(Λ) := ∑
ω∈Λ×

1
ωk . (3.28)

Here we require k > 2 for convergence, and for k odd is it easy to see that Gk is identically zero.
Hence, g2 = −60G4 and g3 = −140G6 are the first non-trivial Eisenstein series. They naturally
appear as Laurent series coefficients of the Weierstraß function:

℘(z) =
1
z2 + ∑

k≥1
(2k + 1)G2k+2 z2k . (3.29)

Modular forms. For Λ = Z + τZ, we can interpret Eisenstein series as holomorphic functions on
the upper-half plane H. As such, they satisfy several amazing properties.

• Eisenstein series behave well under the action of the modular group:

Gk

(
aτ + b
cτ + d

)
= (cτ + d)k Gk(τ) . (3.30)

A holomorphic function on the upper-half plane which stays bounded as τ → i∞ and satisfies
such property is called a modular form of weight k.
• Writing q = e2πiτ, called the nome, we can consider the Taylor expansion around q = 0 (that

is, a Fourier series):

G2k(τ) = 2ζ(2k)

(
1 +

2
ζ(1− 2k)

∞

∑
n=1

σ2k−1(n) qn

)
, (3.31)

where ζ(s) is the Riemann zeta function and σm(n) = ∑d|n dm is the divisor sum function, the
sum of the m-th powers of the divisors of n (see figure 19). The q-series can be resummed as
a Lambert series, that is

∞

∑
n=1

σ2k−1(n) qn =
∞

∑
n=1

n2k−1 qn

1− qn . (3.32)

It is customary to denote E2k := G2k
2ζ(2k) .

• The set Mk of modular forms of weight k is a complex vector space of dimension

dimC Mk =


0 if k is odd,

⌊k/12⌋ if is even and k ≡ 2 (mod 12),

⌊k/12⌋+ 1 otherwise.

(3.33)

The graded ring M :=
⊕

k Mk is isomorphic, as an algebra over C, to the polynomial ring
in E4 and E6. Since the space of modular forms of weight 2k is one-dimensional for 2k =
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Figure 19. Log-linear plots of divisor sum functions σm for m = 0, 1, 2.

4, 6, 8, 10, 14, different products of Eisenstein series having those weights have to be equal up
to a scalar multiple. In fact, we obtain the identities:

E2
4 = E8 , E4E6 = E10 , E4E10 = E14 , E6E8 = E14 . (3.34)

Using the q-expansions of the Eisenstein series, they may be restated as identities involving
the sums of powers of divisors. For instance, the first relation reads

σ7(n) = σ3(n) + 120
n−1

∑
m=1

σ3(m)σ3(n−m) . (3.35)

Modular discriminant, Dedekind eta function, j-invariant. Dropping the holomorphicity condition,
we obtain modular functions. There are meromorphic functions in the upper-half plane which
behave well under the action of the modular group. The discriminant ∆ = g3

2− 27g2
3 is a modular

function of weight 12. It can be expressed as the infinite product

∆(τ) = (2πi)12 q
∞

∏
k=1

(1− qk)24 . (3.36)

The presence of 24 is related to the fact that the celebrated Leech lattice has 24 dimensions.
The function η(τ) := q1/24 ∏k≥1(1− qk) is called the Dedekind eta function, which is a modular
function of weight 1/2. The Fourier coefficients of ∆, that is

∆(τ) = (2πi)12 ∑
n≥1

τ(n) qn , (3.37)

defines a function τ : N → Z (not to be confused with the variable τ = 1
2πi log(q) ∈ H) called

the Ramanujan tau function (see figure 20). It satisfies some remarkable arithmetic properties,
firstly conjectured by Ramanujan in 1916:

• τ(mn) = τ(m)τ(n) if gcd(m, n) = 1,
• τ(pr+1) = τ(p)τ(pr)− p11τ(pr−1) for p prime and r > 0,
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Figure 20. The log-linear plot of the absolute value of Ramanujan’s tau function
(in blue), with its values at prime numbers highlighted in orange and the values
2p11/2 for p prime in red. Ramanujan’s conjecture state that all orange dots lays
below the red ones.

• |τ(p)| ≤ 2p11/2 for all primes p.

The first two properties where proved by Mordell in 1917. The last property, known as Ramanu-
jan’s conjecture, was proved by Pierre Deligne in 1974 as a consequence of his proof of the Weil
conjectures, a finite-field analogue of Riemann’s hypothesis (Deligne received the Fields medal
in 1978 for his proof).

Another interesting function is Klein’s j-invariant, a modular function of weight 0:

j(τ) := 1728
E4(τ)

3

E4(τ)3 − E6(τ)2 . (3.38)

The j-invariant defines a biholomorphism between the one-point compactification of the modular
curve H/SL(2, Z) (adding the point i∞) and the Riemann sphere P1. Apart from its relation with
elliptic curves, it has surprising connections to the symmetries of the monster group, the largest
sporadic simple group of order 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8 · 1053.
This connection is referred to as monstrous moonshine (Richard Borcherds received the Fields
medal in 1998 for his work on the subject).

Jacobi theta functions. Another fundamental function associated to the lattice Z + τZ is the Jacobi
theta function, defined as

ϑ(z; τ) :=
∞

∑
n=−∞

eπi(n2τ+nz) . (3.39)

The above series converges uniformly on every compact of C×H. In particular, for any fixed
τ ∈ H, ϑ(z; τ) is holomorphic in z. It can be shown that its zeros are all simple, and located at
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Figure 21. The Jacobi theta function on the square lattice.

z = n 1
2 +m τ

2 for n, m ∈ Z. However, ϑ does not quite define a function on the torus C/(Z+ τZ):
this is because it is quasi-periodic, meaning that

ϑ(z + 1; τ) = ϑ(z; τ) and ϑ(z + τ; τ) = e−πi(τ+2z) ϑ(z; τ) . (3.40)

The location of the zeros and the quasi-periodicity can be used to construct arbitrary mero-
morphic functions on the torus. Indeed, for any x ∈ C, consider the translated theta function
ϑ(x)(z; τ) := ϑ(z− 1

2 − τ
2 − x; τ). For fixed integers m1, . . . , mM, n1, . . . , nN ≥ 1 and distinct points

x1, . . . , xM, y1, . . . , yN ∈ C such that ∑i mixi −∑j njyj ∈ Z, it is easy to see that

∏M
i=1 ϑ(xi)(z; τ)mi

∏N
j=1 ϑ(yj)(z; τ)nj

(3.41)

defines a (Z + τZ)-periodic meromorphic function with zeros at x1, . . . , xM of order m1, . . . , mM

and poles at y1, . . . , yN of order n1, . . . , nN . In particular, it defines a meromorphic function on
the torus with prescribed zeros and poles.

Theta functions are intimately related to modular functions and the general theory of q-series.
For instance, ϑ can be expressed as an infinite triple product as

ϑ(z; τ) =
∞

∏
n=1

(1− q2n)(1 + e2πizq2n−1)(1 + e−2πizq2n−1) , (3.42)

or more compactly as ϑ(z; τ) = (q2; q2)∞ (−e2πizq; q2)∞ (−e−2πizq; q2)∞ in terms of the q-Poch-
hammer symbol (a; q)∞ := ∏n≥1(1− aqn).

Lecture 8

Apr 18
th, 20243.2. Divisors. On complex tori, we have a natural notion of summation which has proven to be

very fruitful in the study of meromorphic functions. Although arbitrary Riemann surfaces are
not endowed with a natural group law structure, we can still define a formal group.
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Figure 22. A degree-zero divisor on a genus 2 Riemann surface.

Definition 3.6. Let X be a Riemann surface. Define Div(X) as the free abelian group of points
on X:

Div(X) :=

{
∑

x∈X
nx[x]

∣∣∣∣∣ nx ∈ Z, nx = 0 for all but finitely many x

}
. (3.43)

For D = ∑x∈X nx[x], the (finite) set of points x such that nx ̸= 0 is called the support of D. Define
the degree of D = ∑x∈X nx[x] as deg(D) := ∑x∈X nx. In particular, deg : Div(X) → Z defines
a group homeomorphism, and we denote by Div0(X) its kernel, the subgroup of degree-zero
divisors.

In other words, a divisor is simply a finite collection of points on a Riemann surface weighted by
integers (see figure 22). The degree is simply the sum of all such integral weights.

3.2.1. Principal divisors, linear equivalence, partial ordering. Inspired again by the result for tori, it
is natural to assign a divisor to any meromorphic function.

Definition 3.7. For a non-zero meromorphic function f ∈ M(X) on a compact X, define its
associated divisor, divisor of zeros, and divisor of poles as

div( f ) := ∑
x∈X

ordx( f ) [x] ,

div0( f ) := + ∑
x∈X

ordx( f )>0

ordx( f ) [x] ,

div∞( f ) := − ∑
x∈X

ordx( f )<0

ordx( f ) [x] .

(3.44)

Clearly, div( f ) = div0( f )− div∞( f ). We also set div( f ) = 0 for f ≡ 0. Every divisor of the form
D = div( f ) for a meromorphic function f is called principal. The set of principal divisors on X
is denoted by PDiv(X). Notice that, as ∑x ordx( f ) = 0 for meromorphic functions on compact
Riemann surfaces, we have that deg(D) = 0 for all D principal divisors.

Remark 3.8. Do not confuse the degree of a meromorphic function f : X → P1 with the degree
of its divisor div( f ). The latter is always zero. The degree of f is equal to the degree of its divisor
of zeros and divisor of poles: deg( f ) = deg(div0( f )) = deg(div∞( f )).

As ordx : M(X)→ Z∪ {∞} is a discrete valuation, The following result immediately follows.
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Lemma 3.9. Let f , g be meromorphic functions on a compact Riemann surface X.

• div( f · g) = div( f ) + div(g),
• div(1/ f ) = −div( f ),
• div( f /g) = div( f )− div(g).

In particular, PDiv(X) is a subgroup of Div(X). In fact, it is a subgroup of Div0(X), the group of degree
zero divisors.

Definition 3.10. For a compact Riemann surface X, define the Picard group8 as the quotient
Pic(X) := Div(X)/PDiv(X). In other words, two divisors D and E define the same class element
if and only if there exists a meromorphic function on X such that

D− E = div( f ) . (3.45)

In this case, we say that D and E are linearly equivalent, and write D ∼ E.

Intuitively, the Picard group measures ‘how far’ a divisor is from being the divisor of a meromor-
phic function. A description of the Picard group is provided by the Abel–Jacobi theory presented
in section 5.

Example 3.11 (Picard group of P1). For P1, every degree-zero divisor is principal. Indeed, any
such divisor is of the form

D =
M

∑
i=1

mi[xi]−
N

∑
j=1

nj[yj] (3.46)

for some integers m1, . . . , mM, n1, . . . , nN ≥ 1 such that ∑i mi = ∑j nj and distinct points x1, . . . , xM,
y1, . . . , yN ∈ P1. Denote xi = [ai : bi] and yj = [cj : dj]. SettingF(z, w) = ∏M

i=1(biz− aiw)mi ,

G(z, w) = ∏N
j=1(djz− cjw)nj ,

and P1 P1

[z : w] [F(z, w) : G(z, w)]

f

, (3.47)

we find that f is a meromorphic function on P1 with div( f ) = D. On the other hand, the degree
homomorphism deg : Div(P1) → Z is clearly surjective (this is true for all compact Riemann
surfaces), and the above observation shows that ker(deg) = PDiv(P1). Thus, we find that

deg : Pic(P1) −→ Z (3.48)

is a group isomorphism: Pic(P1) ∼= Z.

Exercise 3.6 (Abel’s theorem for the torus). On a torus T = C/Λ, consider the map

A: Div(T) −→ T , ∑
x∈T

nx[x] 7−→ ∑
x∈T

nx x . (3.49)

8In modern algebraic geometry, for a scheme X, the term ‘Picard group’ is usually reserved for the group of
isomorphism classes of invertible sheaves. If X is nice enough (that is, Noetherian, integral, separated and regular in
codimension 1) then the Picard group is isomorphic to the group of divisors modulo principal divisors. For Riemann
surfaces the two notions coincide.
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The sum on the right-hand side is intended according to the group law on T. Show that D is principal
if and only if deg(D) = 0 and A(D) = [0]. Conclude that two divisors D, E ∈ Div(X) are linearly
equivalent if and only if deg(D) = deg(E) and A(D) = A(E).

� Hint. Use Abel’s theorem for the torus (proposition 3.5) and the existence of theta functions.

Notice that, in general, meromorphic functions are determined by their associated divisor up to
scalar. Indeed, if f , g ∈ M(X) are such that div( f ) = div(g), then div( f /g) = 0, as ordx is a
discrete valuation. As a consequence, f /g has no zeros and no poles, which means that it must
be a non-zero constant.

A useful property of the divisors of zeros and poles of a meromorphic function is that all coeffi-
cients are non-negative. It is then natural to generalise such notion as follows.

Definition 3.12. For a divisor D = ∑x∈X nx[x] on a Riemann surface X, we write:

• D ≥ 0 if and only if nx ≥ 0 for all x ∈ X,
• D > 0 if D ≥ 0 and D ̸= 0.

For two divisors D and E, we write D ≥ E if and only if D − E ≥ 0 (and likewise for >). This
defines a partial ordering on the group of divisors.

Notice that every divisor can be uniquely written as D = D+ −D−, where D+, D− ≥ 0 and with
disjoint support. They are called the positive and negative parts of D. For instance, if D = div( f )
is principal, then D+ = div0( f ) and D− = div∞( f ).

Exercise 3.7 (Pullback of divisors). Let φ : X → Y be a holomorphic map between compact Riemann
surfaces. For any point y ∈ Y, define the pullback

φ∗[y] := ∑
x∈φ−1(y)

µx(φ) · [x] , (3.50)

and extend it by linearity to a group morphism φ∗ : Div(Y) → Div(X). Prove that deg(φ∗D) =

deg(φ) · deg(D). What happens when you pullback principal divisors?

3.2.2. Space of functions associated to a divisor. We have seen how the language of divisors can be
effectively used to translate geometric properties of meromorphic functions on Riemann surfaces
in more algebraic terms. Along these lines, we introduce the following space of meromorphic
functions.

Definition 3.13. For a divisor D on a compact Riemann surface X, define the space

L(D) :=
{

f ∈M(X)×
∣∣ div( f ) ≥ −D

}
∪ { 0 } . (3.51)

The space L(D) has a nice geometric interpretation: it is the set meromorphic functions whose
zeros and poles are bounded by D. More precisely f ∈ L(D) if and only if for every x ∈ X:
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• if the coefficient nx in D is negative, f has a zero of order at least −nx at x,
• if the coefficient nx in D is positive, f can have a pole of order at most nx at x,
• if the coefficient nx in D is zero, f is holomorphic at x.

Alternatively, we can think about the above conditions in terms of Laurent series. For any point
x ∈ X, choose a local coordinate z centred at x. Then f ∈ L(D) if and only if its local Laurent
expansion at x has no terms lower than z−nx .

For instance, L(0) is precisely the space of holomorphic functions on X.

Example 3.14. Let X = P1, D = d[∞], where ∞ = [1 : 0] is the point at infinity on the Riemann
sphere and d ∈ Z is a fixed integer. By definition, a meromorphic function f ∈M(X)× belongs to
L(d[∞]) if and only if div( f ) + d[∞] ≥ 0. Write div( f ) = ∑M

i=1 mi[xi]−∑N
j=1 nj[yj] with ni, mj > 0.

We have two cases.

• d < 0. In this case we need f to have a zero of order at least −d at infinity (in order to cancel
d[∞]) and no pole. A function with no poles must be constant. Since it must have at least a
zero, it must be identically zero.
• d ≥ 0. In this case we need f to have poles only at ∞ of order at most d. Such meromorphic

functions are parametrised as

f ([z : w]) = [F(z, w) : wd] (3.52)

with F a homogeneous degree d polynomial.

In other words,

L(d[∞]) =

{ 0 } if d < 0 ,

C[z, w]d if d ≥ 0 ,
(3.53)

where C[z, w]d denotes the vector space of degree d homogeneous polynomials.

We collect here some properties of L(D).

Proposition 3.15. Let X be a compact Riemann surface, D, E ∈ Div(X).

(1) L(D) is a complex vector space.
(2) If D ≥ E, then L(D) ⊇ L(E).
(3) If D ∼ E, there is a canonical isomorphism L(D) ∼= L(E).
(4) If D ∼ 0 (that is, D is principal), then L(D) = O(X) ∼= C.
(5) If deg(D) < 0, then L(D) = { 0 }.

Proof. The first property follows from ordx being a discrete valuation. The second property
follows immediately from the definition. As for the third property, let g ∈ M(X)× such that
D− E = div(g). Set

µg : L(D) −→ L(E) , f 7−→ f · g . (3.54)
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It is easy to check that the above map is well-defined (that is f · g ∈ L(E) for any f ∈ L(D)), it
is linear, and its inverse is the multiplication by 1/g. For the fourth property, D ∼ 0 implies that
L(D) is the space of holomorphic functions on X, which are simply the constant functions. For
the last property, suppose that deg(D) < 0 and assume there exists a non-zero f ∈ L(D). By
definition, div( f ) + D ≥ 0, but taking the degree we find

0 ≤ deg(div( f ))︸ ︷︷ ︸
=0

+deg(D) = deg(D) , (3.55)

which is a contradiction. □

We can now prove a crucial property of L(D): a bound on its dimension. Let us start with a
preliminary result comparing D and D− [x].

Lemma 3.16 (Codimension 1 lemma). Let X be a compact Riemann surface, x ∈ X a point, and
D ∈ Div(X) a divisor. Then either L(D − [x]) = L(D), or L(D − [x]) has codimension 1 inside
L(D). In other words,

dim
(
L(D)/L(D− [x])

)
≤ 1 . (3.56)

Proof. Choose a local coordinate z centred at x, and let n be the coefficient of [x] in D. For any
f ∈ L(D), its local Laurent expansion at x is of the form c f z−n plus higher order term, with
c f ∈ C (possibly zero). Consider the map

ϕ : L(D) −→ C , f 7−→ c f . (3.57)

Then ϕ is linear, with kernel being L(D− [x]). If ϕ is identically zero, then L(D− [x]) = L(D).
Otherwise, ϕ is onto (being a non-trivial linear map to C), hence L(D− [x]) has codimension 1
inside L(D). □

Remark 3.17. It is important to notice that the value c f from above does depend on the choice
of local coordinates. Indeed, if w = τ(z) is a different local coordinate centred at x, then τ(z) =
λz + O(z2) for some λ ̸= 0. Thus, the Laurent expansion of f in the w coordinate will be

c f
(
λz + O(z2)

)−n
+ O(z−n−1) = (λ · c f )z−n + O(z−n−1) . (3.58)

In other words, the coefficient we are interested in gets rescaled by a non-zero scalar. Multiplica-
tion by a non-zero scalar is just a linear automorphism of C, and it does not affect the kernel of
the map ϕ. Hence, the above argument holds.

Lecture 9
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Theorem 3.18 (Finiteness theorem). Let X be a compact Riemann surface and D ∈ Div(X) a divisor.
Then L(D) is a finite-dimensional vector space. More precisely, setting ℓ(D) := dimL(D), we have

ℓ(D) ≤ 1 + deg(D+). (3.59)

where D+ is the positive part of D.
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Proof. We proceed by induction on the degree of D+. If deg(D+) = 0, then D+ = 0, so ℓ(D+) = 1
from property (4) of proposition 3.15. Since D ≤ D+, we find ℓ(D) ≤ ℓ(D+) = 1 = 1 + deg(D+).

Suppose now that deg(D+) > 0 and that the bound holds for all divisors whose positive part
has degree < deg(D+). Let x be a point on the support of D+, and consider D− [x]. Then the
positive part of D− [x] has degree deg(D+)− 1, so

ℓ(D− [x]) ≤ 1 + (deg(D+)− 1) = deg(D+) . (3.60)

Thanks to lemma 3.16, we have ℓ(D) ≤ 1 + ℓ(D− [x]), which concludes the proof. □

Exercise 3.8 (Complete linear systems). Let X be a compact Riemann surface, D ∈ Div(X). Define
the complete linear system associated to D as

|D| := { E ∈ Div(X) | E ≥ 0 and E ∼ D } . (3.61)

Prove that the map
P(L(D)) −→ |D| , [ f ] 7−→ div( f ) + D (3.62)

is well-defined and is an isomorphism. Compute |D| for:

• X = P1 and D = d[∞];
• X = C/Λ and D = [x].

Exercise 3.9 (Complete linear systems and projective embeddings þ). Given a divisor D on a
compact Riemann surface X, define the map

φD : X −→ Pn , x 7−→ [ f0(x) : f1(x) : · · · : fn(x)] , (3.63)

where f0, . . . , fn form a basis9 of L(D). A basic question is: when is φD and embedding?

• We say that the complete linear system |D| is free iff ℓ(D) − l(D − [x0]) = 1 for every x0 in the
support of D. Fix a point x ∈ X. Show that if |D| is free, then there exists a basis f0, f1, . . . , fn for
L(D) such that ordx( f0) = −nx and ordx( fi) > −nx for i ≥ 1.
• Let |D| be free. Show that φD(x) = φD(y) iff L(D − [x] − [y]) = L(D − [x]) = L(D − [y]).

Conclude that φD is injective iff ℓ(D− [x]− [y]) = ℓ(D)− 2 for all distinct x, y ∈ X.
• Conclude that, for |D| be free, φD is an embedding iff ℓ(D− [x]− [y]) = ℓ(D)− 2 for all x, y ∈ X

(including coinciding points). In this case, |D| is called very ample.

9If the negative part of D is non-trivial, then the functions fi have common zeros of certain orders. In this case, the
common factors can be simplified, as coordinates on the projective space are well-defined up to global scaling. Thus,
the definition of φD is well-posed.
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4. Differential forms and Riemann–Roch theorem

In the previous chapter we have seen that, for a fixed compact Riemann surface X and a divisor
D on it, the space L(D) of meromorphic functions with zero and poles bounded by D is a
finite-dimensional complex vector space. Hence, a natural question arises:

How can we compute ℓ(D)?

In other words, how many linearly independent meromorphic functions can we find with a
specific zero/pole structure? The answer is given by the celebrated Riemann–Roch theorem.

Before discussing it, we introduce another useful object on Riemann surfaces: meromorphic
differential forms. Again, the main motivation is Cauchy’s integral formula: the value of a
holomorphic function is determined by a contour integration of a meromorphic form.

4.1. Meromorphic differential forms.

Definition 4.1. A meromorphic (differential 1-) form on an open set U ⊆ C is an expression of
the form

ω = f (z) dz (4.1)

where f is a meromorphic function. We say that ω is meromorphic in the coordinate z. We say
that ω is a holomorphic form if f is holomorphic.

Remark 4.2. Notice that, if ω, η are meromorphic forms on U, so do ω + η and the product f ·ω
for any meromorphic function f on U. In other words meromorphic forms on U constitute an
M(U)-module. Similarly, holomorphic forms on U constitute an O(U)-module.

Suppose we have two meromorphic form ωi = fi(zi) dzi in Ui ⊆ C in the coordinate zi (i = 1, 2),
and a holomorphic map τ : U1 → U2, z2 = τ(z1). We say that ω1 transforms into ω2 under τ if

f1(z1) = f2
(
τ(z1)

)
τ′(z1) (4.2)

The definition is formulated to be compatible with the chain rule for integration, where dz2 =

τ′(z1)dz1. Notice that, if τ is invertible, then ω2 transforms into ω1 under τ−1.

4.1.1. Meromorphic forms on Riemann surfaces. We are now ready to define meromorphic forms on
Riemann surfaces.

Definition 4.3. A meromorphic form on a Riemann surface X is a collection of meromorphic
forms {ωi }, one for each chart φi : Ui → Vi in the coordinate of Vi, such that for every pair
of overlapping charts Ui ∩ Uj ̸= ∅, the form ωi transforms into ωj under the transition map
φi,j = φj ◦ φ−1

i . We denote the M(X)-module of meromorphic forms on X by K (X), and the
O(X)-module of holomorphic forms by Ω(X).
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A simple way of constructing meromorphic forms goes as follows. Consider a meromorphic
function f ∈ M(X). This is noting but a collection of meromorphic functions { fi(zi) }, one for
each chart (Ui, φi) of X. It is easy to check that the collection of meromorphic form { f ′(zi) dzi }
defines a meromorphic form on X, denoted d f . Meromorphic forms obtained this way are called
exact. It is also easy to check that the following Leibniz rule holds:

d( f · g) = f · dg + g · d f . (4.3)

Exercise 4.1. Prove that the only holomorphic form on P1 is the trivial one (identically zero). Prove that
the only holomorphic form on a torus C/Λ is the one induced by scalar multiples of dz.

Given a meromorphic form ω on a compact Riemann surface X and a point x ∈ X, choose local
coordinates centred at x, so that locally around x the differential form is expressed as f (z)dz. We
define the order of ω at x, denoted ordx(ω) as the order of f at z = 0. We say that ω has a zero
of order m at x if m = ordx(ω) > 0, and a pole of order m if −m = ordx(ω) < 0.

The set of zeros and poles are discrete, and finite if X is compact. It is then natural to give the
following definition.

Definition 4.4. For a meromorphic form ω on a compact Riemann surface X, define the divisor

div(ω) := ∑
x∈X

ordx(ω) [x] . (4.4)

We also have the notion of div0(ω) and div∞(ω) defined accordingly. Every divisor of the form
D = div(ω) for a non-trivial meromorphic form ω is called canonical. The set of canonical
divisors on X is denoted by KDiv(X).

Notice that, for any meromorphic function f and meromorphic form ω on X, we have

div( f ·ω) = div( f ) + div(ω) . (4.5)

In other words, if we add a principal divisor to a canonical divisor, the result is still canonical. In
algebraic terms, PDiv(X) + div(ω) ⊆ KDiv(X). The other inclusion is also true.

Lemma 4.5. Let ω1 and ω2 be two meromorphic forms on a Riemann surface X, with ω1 not identically
zero. Then there exists a meromorphic function f such that ω2 = f ·ω1.

Proof. For a local chart (U, φ) of X, write ωi = gi(z) dz. We have that g1 is not identically zero,
since ω1 is not. Define the meromorphic function f on X as g2/g1 on the local chart (U, φ). It is
easy to check that f is well-defined (that is, it is independent of the choice of local coordinates),
and ω2 = f ·ω1. □

Corollary 4.6. The set of canonical divisor is a coset of the subgroup of principal divisors: KDiv(X) =

PDiv(X) + div(ω). In other words, any two canonical divisors are equivalent.
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Recall that a meromorphic function on a compact Riemann surface has vanishing degree. This
is a consequence of the ‘# zeros = # poles’ result for meromorphic functions. What about mero-
morphic forms? It is easy to find an example where the degree is non-zero.

Exercise 4.2. Consider the meromorphic function f : P1 → P1, [z : w] 7→ [z : w]. Let ω = d f . Show
that the degree of div(ω) is −2.

The general answer is given by the following result.

Lemma 4.7 (Forms: #zeros − #poles = 2g− 2). Let X be a compact Riemann surface, ω a non-trivial
meromorphic form. Then deg(div(ω)) = 2g− 2, where g is the genus of X.

Proof. In light of the fact that any two canonical divisors are equivalent, any meromorphic form
would work. Assume for a moment that there exists a non-constant meromorphic function f on
X, that is a holomorphic map f : X → P1, and set ω = d f . Our goal is to compute deg(div(ω)).

Let d = deg( f ). We can assume without loss of generality that f is unramified at the pre-images
of ∞ (if not, we can compose it with an automorphism of P1). As a consequence, f has exactly
d simple poles, say x1, . . . , xd, which are double poles for ω (as d(1/z) = −1/z2dz). On the
other hand, the zeros of ω are exactly the ramification points of f and µx( f )− 1 = ordx(ω) (as
d(zk) = kzk−1dz). As a consequence,

div(ω) = ∑
x∈Ram f

(µx( f )− 1)[x]− 2
(
[x1] + · · ·+ [xd]

)
. (4.6)

In particular, the degree is deg(div(ω)) = ∑x∈Ram f
(µx( f ) − 1) − 2d. On the other hand, the

Riemann–Hurwitz formula implies that

2gX − 2 = −2d + ∑
x∈Ram f

(µx( f )− 1) , (4.7)

hence the thesis. □

The above proof relies on the assumption that, for any compact Riemann surface, there exists
a non-constant meromorphic function f on X. Notice that the theorem is false if we substitute
‘meromorphic’ with ‘holomorphic’, so the assertion is highly non-trivial! Such result is known
as Riemann’s existence theorem, whose proof is omitted.

Theorem 4.8 (Riemann’s existence theorem). Every compact Riemann surface admits a non-constant
meromorphic function.

Exercise 4.3 (Riemann–Hurwitz formula on divisors). Let f : X → Y be a holomorphic map between
compact Riemann surfaces. Let KX and KY be any canonical divisor on X and Y respectively, and define
the ramification divisor as

R f := ∑
x∈Ram f

(
µx( f )− 1

)
[x] ∈ Div(X) . (4.8)

Prove that
KX ∼ f ∗KY + R f (4.9)
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and deduce the Riemann–Hurwitz formula by taking degrees.

4.1.2. Space of forms associated to a divisor. As for meromorphic functions, it is natural to use
divisors to bound the zeros and poles of a meromorphic form.

Definition 4.9. For a divisor D on a Riemann surface X, define the space

I(D) :=
{

ω ∈ K (X)×
∣∣ div(ω) ≥ −D

}
∪ { 0 } . (4.10)

A simple consequence of the fact that any two canonical divisors are equivalent is an isomor-
phism between I(D) and L(D + K), where K ∈ KDiv(X) is any canonical divisor. This is a
special case of the celebrated Serre duality (Jean-Pierre Serre received the Fields Medal in 1954

for his work on sheaf theory).

Proposition 4.10 (Serre duality for Riemann surfaces). There is a natural isomorphism of vector spaces

µω : L(D + K) −→ I(D) , f 7−→ f ·ω , (4.11)

where K = div(ω) ∈ KDiv(X) is any canonical divisor. In particular, I(D) is finite dimensional.

For the space L(D), we have a good understanding in the case of D ∼ 0 principal: L(0) = O(X)

is the space of holomorphic functions, and O(X) ∼= C since the only holomorphic functions on a
compact Riemann surface are the constant one. As for I(D), we can ask the same question: can
we characterise I(0)? From the definition, it is clear that

I(0) = Ω(X) (4.12)

is the space of holomorphic differentials on X. For compact X, this must be finite dimensional.
But contrary to the case of functions, we do not have yet a clear understanding of Ω(X). It is easy
to see that we can have non-constant holomorphic forms: on the torus, dz is such an example.
It turns out that we can completely characterise the space of holomorphic forms in terms of the
genus of X.

Theorem 4.11 (Holomorphic forms on compact Riemann surfaces). The space of holomorphic forms
on a compact Riemann surface X is g-dimensional:

Ω(X) ∼= Cg , (4.13)

where g is the genus of X.
The proof is not

required for the
exam.

Sketch of the proof (for the reader familiar with differential calculus). We omit the most technical parts
of the proof but provide a general idea for readers familiar with differential topology.

Step 1: harmonic forms. We start by considering the space of smooth real-valued forms on X
(considered as a smooth 2-dimensional real manifold), that is expressions that locally (for z =

x + iy) look like

ν
loc
= p dx + q dy =

p− iq
2

dz +
p + iq

2
dz̄ (4.14)
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for p = p(x, y) and q = q(x, y) smooth real-valued functions. Here loc
= means that the equality

holds in local coordinates. On the space of smooth real-valued forms on X, we have the involution
defined by the Hodge star:

⋆ν
loc
= −q dx + p dy = −i

p− iq
2

dz + i
p + iq

2
dz̄ . (4.15)

In turn, it defines a norm (the L2-norm) as

∥ν∥2 =
∫

X
ν ∧ ⋆ν . (4.16)

Here ν ∧ ⋆ν
loc
= (p2 + q2)dxdy. It can be checked that all definitions do not depend on the choice

of local coordinates.

A smooth real-valued form ν is called harmonic if it is closed (dν = 0) and co-closed (d⋆ν = 0),
which locally translates into

dν
loc
= (−py + qx) dxdy = 0 , d⋆ν

loc
= (qy + px) dxdy = 0 . (4.17)

The Cauchy–Riemann equations implies that if ν is harmonic, then iν− ⋆ν is holomorphic; con-
versely, if ω is holomorphic, then ℑω is harmonic. A simple computations shows that such maps
are inverse of each other. In other words, there is an isomorphism

H (X) Ω(X)

ν iν− ⋆ν

ℑω ω

(4.18)

as real vector spaces. Hence, we simply have to prove that H (X) has real dimension 2g.

Step 2: homology. Consider the real vector space H1(X, R) generated by homology cycles. That is,
the space generated by piecewise smooth oriented contours (i.e. closed paths), up to equivalence
defined as γ1 ∼ γ2 if and only if there exists a 2-cell c in X with ∂c = γ1 − γ2. The opposite
of a contour is the contour oriented in the opposite direction. A classical result from algebraic
topology states that H1(X, R) is a real vector space of dimension 2g.

Step 3: Dirichlet’s principle and Weyl’s lemma. It can be shown that, for a fixed basis γ = (γ1, . . . , γ2g)

of H1(X, R), the map

H (X) −→ R2g , ν 7−→
(∮

γ1

ν, . . . ,
∮

γ2g

ν

)
, (4.19)

is a linear isomorphism. The proof goes as follows.

For the injectivity, suppose that all cycle integrals of ν vanish. Then ν is exact: ν = d f , with
f (x) =

∫ x
x0

ν (the definition does not depend on the choice of base-point x0 ∈ X nor on path of
integration, since all cycle integrals of ν vanish). In this case, a simple computation shows that
ν ∧ ⋆ν = −d( f · d f ), and applying Stokes theorem we obtain ∥ν∥2 = 0, hence ν = 0.
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As for the surjectivity, fix (ϵ1, . . . , ϵ2g) ∈ R2g. One can show that the space of smooth forms
satisfying

∮
γi

ν = ϵi is a non-empty affine space of the form η(γ,ϵ) + E(X), where η(γ,ϵ) is an
(explicit, (γ, ϵ)-dependent) closed form and E(X) is the space of exact forms on X. Through the
general machinery of Hilbert spaces, one shows that the minimiser of the L2-norm on such affine
space exists. This is known as the Dirichlet’s principle. Weyl’s lemma states that such minimiser
is then harmonic. □

The above ideas led to a more general set of concepts known as Hodge theory, which provides
an understanding of cohomology groups of complex projective varieties in terms of harmonic
forms. One of the Millennium Prize Problems, the Hodge conjecture, revolves around harmonic
forms and algebraic subvarieties.

Remark 4.12. The above strategy can be slightly modified to prove the following statement: given
a compact Riemann surface X and two distinct points x1, x2 ∈ X, there exists a meromorphic
form ω whose only poles are simple, located at x1 with residue +1 and at x2 with residue −1
(the residue of ω at x is the coefficient of 1

z dz in any local coordinate z centred at x).

With this result, we can give a simple proof of Riemann’s existence theorem. On a Riemann
surface X, fix three distinct points x1, x2, x3. Let ω1 be the meromorphic form with poles at x1

and x2, and residues +1 and −1. Let ω2 be the meromorphic form with poles at x2 and x3, and
residues +1 and −1. The f = ω1

ω2
is a meromorphic form on X with a simple pole at x1 and a

simple zero at x3.

Gustav Adolph Roch
(1839–1866)

Exercise 4.4 (Holomorphic forms on projective curves). Let X =

Z(F) ⊂ P2 be a smooth projective plane curve defined by a homogeneous
polynomial F(x, y, z) of degree d ≥ 3. Let f (u, v) = F(u, v, 1) define the
associated affine curve.

• Prove that du and dv define meromorphic forms on X.
• Show that fu du = − fv dv as meromorphic forms on X (here fu = ∂ f

∂u

and fv = ∂ f
∂v ).

• Show that for any polynomial p(u, v) of degree ≤ d− 3, the form

ωp = p(u, v)
du
fv

(4.20)

is holomorphic. How many polynomials of degree ≤ d− 3 in two vari-
ables there are? How does it relate to the genus of X?

Lecture 10

May 2
nd, 20244.2. The Riemann–Roch theorem. We can finally state the Riemann–Roch theorem, arguably the

most important result in the theory of Riemann surfaces.

Theorem 4.13 (Riemann–Roch). Let X be a compact Riemann surface, D ∈ Div(X) a divisor. Then

ℓ(D)− ℓ(K− D) = deg(D) + 1− g , (4.21)
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where K is a canonical divisor and g is the genus of X.

The inequality ℓ(D) ≥ deg(D) + 1− g, known as Riemann’s inequality, was originally proved by
Riemann in 1857; the error term ℓ(K−D) was provided by his student Gustav Roch in 1865. The
theorem was later generalised by Weil for vector bundles on Riemann surfaces, by Noether on
complex surfaces, and by Hirzebruch for an arbitrary holomorphic vector bundle E on a compact
complex manifold X of dimension n:

χ(X, E) =
∫

X
ch(E) td(X) . (4.22)

Here χ(X, E) is the Euler characteristic of E, ch(E) is its Chern character, and td(X) is the Todd
class of X. If X is a compact Riemann surface and E = O(D) is a certain line bundle associated
to a divisor D, the the left-hand side of Hirzebruch–Riemann–Roch’s formula reduces to

χ(X,O(D)) = ℓ(D)− ℓ(K− D) , (4.23)

while the right-hand side simplifies as∫
X

ch(O(D)) td(X) = deg(D) + 1− g . (4.24)

Hirzebruch’s result paved the way for the Grothendieck–Riemann–Roch theorem, a far-reaching
result on coherent cohomology. The main change of perspective in Grothendieck’s formulation
is that the result is best formulated in terms of a map from one variety to another, f : X → Y.
Hirzebruch’s version is retrieved by choosing Y = { ∗ }. Grothendieck received the Fields Medal
in 1966 for introducing the idea of K-theory, a key concept in the statement of his generalise
Riemann–Roch theorem. His result was also fundamental in the development of the Atiyah–
Singer index theorem, another generalisation of Riemann–Roch related to elliptic differential
operator on compact manifolds (Atiyah received the Fields Medal alongside Grothendieck for
his work). Below, Grothendieck’s notes on his version of the theorem.

Witches Kitchen 1971. Riemann–Roch Theorem: The final cry: The diagram

K·(X) K·(Y)

GrK·(X)⊗Z Q GrK·(Y)⊗Z Q

f!

T( f ) chX

f∗

chY

is commutative!
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4.2.1. Consequences of Riemann–Roch. Before giving a proof of Riemann–Roch’s theorem, let us
explore some consequences.

1) Riemann’s existence theorem. Every compact Riemann surface admits a non-constant mero-
morphic function.

Proof. Choose a divisor D of degree g + 1. Then ℓ(D) ≥ 2, which implies the existence of a
non-constant meromorphic function. □

2) Classification of genus 0 Riemann surfaces. If X has genus 0, it is biholomorphic to P1.

Proof. Fix a point x ∈ X, and consider the point divisor D = [x]. Then ℓ(D) ≥ 2, which
means that there exists a non-constant function f : X → P1 with a simple pole at x and no other
poles. Hence, f has degree 1 (the degree of the divisor of poles), which implies that f is a
biholomorphism. □

3) Dimension of ℓ(k[x]). Let k ≥ 0 be an integer, x ∈ X a point, and consider the sequence of
dimensions ℓk := ℓ(k[x]). We already know that ℓ0 = 1. Riemann–Roch implies that ℓk = k+ 1− g
for k > 2g− 2, since ℓ(K− D) = 0 in this range. In other words:

. . .
k

ℓk

|
0

1
|
1

?
|

2g− 2

?
|

2g− 1

g
|

2g

g + 1
(4.25)

4) Weierstraß’s gap theorem. Let X be a compact Riemann surface of genus g > 0, and let
x ∈ X be a point. There are precisely g integers (depending on x) of the form

1 ≤ k1 < k2 < · · · < kg < 2g (4.26)

such that there exists no meromorphic function on X with a single pole of order ki at x.

We can immediately check Weierstraß’s gap theorem for complex tori: the result states that there
is no meromorphic function on a complex torus with a single simple pole. This was precisely the
statement of exercise 3.3.

Proof. We already know, thanks to Riemann–Roch, that ℓ(0) = 1 and ℓ((2g− 1)[x]) = g. On the
other hand, the finiteness theorem 3.18 states that

ℓ(k[x])− ℓ((k− 1)[x]) ≤ 1 . (4.27)

Hence, ℓk := ℓ(k[x]) is a monotone increasing sequence of positive integers, which increases by
at most 1 at each step, with ℓ0 = 1 and ℓ2g−1 = g. Therefore, there must be a total of g integers
in the range 1 ≤ k < 2g, say 1 ≤ k1 < k2 < · · · < kg < 2g for which ℓ(k[x]) = ℓ((k− 1)[x]). If k
is such an integer, then the quotient space

L(k[x])/L((k− 1)[x]) (4.28)
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is trivial. But this space is exactly the space of meromorphic functions with a single pole at x of
order k. This proves the theorem. □

Weierstraß’s gap can be regarded as an obstruction result to the existence of meromorphic func-
tions with specific pole structures. It is a special case of Noether’s gap theorem, whose proof is
omitted.

5) Noether’s gap theorem. Let X be a compact Riemann surface of genus g > 0, and let
x1, x2, . . . be a sequence of points in X. Define recursively the following sequence of divisors:

D0 = 0 , Dk = [xk] + Dk−1 . (4.29)

We now pose the following sequence of questions:

Qk: Is there a non-zero meromorphic function in L(Dk)/L(Dk−1)?

Noether’s gap theorem states that there are precisely g integers (depending on the sequence of
points) of the form 1 ≤ k1 < k2 < · · · < kg < 2g for which the answer to Qk is no if and only if k
is one of the integers in the list.

6) Compact Riemann surfaces are projective. Every compact Riemann surface X admits an
embedding in projective space.

Proof. Let D be a divisor of degree deg(D) ≥ 2g− 1. Then deg(K − D) < 0, so Riemann–Roch
implies that ℓ(D) = deg(D) + 1− g. As a consequence:

• if deg(D) ≥ 2g, then |D| is free;
• if deg(D) ≥ 2g + 1, then |D| is very ample.

Thus, every divisor D of degree deg(D) ≥ 2g + 1 induces an embedding φD : X ↪→ Pℓ(D)+1 (see
exercise 3.9). □

The above argument can be easily improved to show that every genus 1 Riemann surface is
isomorphic to an elliptic curve. Since elliptic curves are isomorphic to complex tori, we deduce
that the modular curve H/SL(2, Z) from theorem 2.1 classifies all genus 1 Riemann surfaces.

7) Holomorphic q-differentials. For q ∈ Z, a holomorphic differential of order q (or simply
q-differential) on an open set U ⊂ C is an expression of the form

f (z) dzq . (4.30)

As in the case of holomorphic functions or differentials (corresponding to the cases q = 0 and
q = 1 respectively), there is a natural notion of transformation under a holomorphic change of
coordinate w = τ(z): it is the one induced by dwq = (τ′(z))q dzq. Hence, we have a well-defined
notion of holomorphic q-differentials on a Riemann surface. It is easy to see that, for a compact
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Riemann surface X with canonical divisor K, the space L(qK) is isomorphic to the space of
q-differential on X. Riemann–Roch allows us to compute its dimension, in accordance to the
following table.

Genus Order Dimension

g = 0 q ≤ 0 1− 2q
q > 0 0

g = 1 q 1

g ≥ 2 q < 0 0
q = 0 1
q = 1 g
q > 1 (2q− 1)(g− 1)

Proof. We want to compute ℓ(qK). Notice that deg(qK) = q(2g − 2). Hence, we immediately
conclude that ℓ(qK) = 0 for

g = 0 and q > 0 or g ≥ 2 and q < 0 (4.31)

because the degree is negative in these cases. On the other hand, Riemann–Roch implies that

ℓ(qK) = q(2g− 2) + 1− g + ℓ((1− q)K) = (2q− 1)(g− 1) + ℓ((1− q)K) . (4.32)

Hence, we deduce the dimension for g = 0 and q > 0 or g ≥ 2 and q > 1. The case g ≥ 2 and
q = 0 or q = 1 are known already: they correspond to holomorphic functions and holomorphic
forms respectively.

For g = 1, Riemann–Roch gives no useful information. However, we can argue as follows. If
ω ∈ Ω(X) is a non-zero holomorphic form, then it cannot have zeros (since it has no poles and its
degree is 0). Thus multiplication by ω gives an isomorphism between the space of q-differential
and the space of (q+ 1)-differentials, while multiplication by 1/ω gives an isomorphism between
the space of q-differential and the space of (q− 1)-differentials. Since the space of holomorphic
0-differentials (i.e. holomorphic functions) is one-dimensional, we conclude. □

8) Hyperelliptic curves. A Riemann surface X is called hyperelliptic if and only if it admits a
degree two map to P1. These are generalisations of elliptic curves, where the degree two map to
the Riemann sphere is the map given in example 2.13. It can be shown that every genus 0, genus
1, and genus 2 Riemann surface is hyperelliptic.

Proof. Since genus 0 and genus 1 curves are always biholomorphic to the Riemann sphere or an
elliptic curve, in these cases the statement follows from examples 2.12 and 2.13 respectively. As
for genus 2: the canonical divisor KX of a genus 2 curve is such that ℓ(KX) = 2, which in turn
gives a map φ : X → P1 thanks to exercise 3.9. From the definition of the map and the fact that
the degree of KX is 2g− 2 = 2, one concludes that φ has degree two. □
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4.2.2. Proof of Riemann–Roch. We propose a proof of the Riemann–Roch theorem by dividing it
into three parts:

(1) Show that Riemann–Roch holds for divisors D satisfying D ≥ 0.
(2) Prove the Riemann–Roch inequality ℓ(D)− ℓ(K− D) ≥ deg(D) + 1− g for all D.
(3) Deduce the Riemann–Roch theorem in full generality.

Before proceeding with the proof, we need to discuss the concept of residue on Riemann surfaces.
First, notice that forms can be integrated along paths on Riemann surfaces:∫

γ
ω (4.33)

for γ : [0, 1] → X a path and ω holomorphic along γ. This makes sense locally (as ω is of the
form f (z)dz for a holomorphic function f ) and the integration is additive (the integral from a
to b is equal to the integral from a to c plus the integral from c to b). So the above integral can
be defined by breaking the path into pieces, each contained in local chart, perform each integral
in local coordinates, and sum the contributions up. The integral in local coordinates does not
depend on the choice thanks to the chain rule for integrals.

Now, if ω is a meromorphic form on a Riemann surface X, we define its residue at a pole x ∈ X
to be

Res
x

ω :=
1

2πi

∮
γx

ω , (4.34)

where γx is a small counter-clock wise oriented circle around x that contains x and no other
poles. The definition does not depend on the choice of contour as in the case of C. Notice
that, on arbitrary Riemann surfaces, the residue is well-defined for meromorphic forms only
(it is not well-defined for meromorphic functions). Another possibility is to define the residue
as the coefficient of z−1dz in the Laurent expansion of ω in any local coordinate z centred at
x. It can be shown that the definition does not depend on the choice of local coordinate. For
instance, consider the case of a simple pole: ω = f (z)dz with f (z) = c z−1 + O(1), and take
w = τ(z) = λ z + O(z2) a holomorphic change of coordinates centred at the origin (hence,
λ ̸= 0). Then

f (τ(z))τ′(z) =
(

c
z(λ + O(z))

+ O(1)
) (

λ + O(z)
)
= c z−1 + O(1) , (4.35)

so the definition does not depend on the choice of coordinates. The proof can be generalised to
poles of arbitrary order.

A remarkable property of compact Riemann surfaces, which is a special case of the residue
theorem, is that the sum of all residues of a meromorphic form is equal to zero.

Lemma 4.14 (Residue theorem on compact Riemann surfaces). Let ω be a meromorphic form on a
compact Riemann surface X with poles at x1, . . . , xN . Then

N

∑
i=1

Res
xi

ω = 0 . (4.36)
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The proof employs a simple trick: it interprets the sum of the residues across the entire compact
Riemann surface as a Cauchy integral along a contour oriented in the opposite direction, resulting
in zero because it encircles no poles.

We are now ready to prove the Riemann–Roch theorem.

Part i. If D = 0, then Riemann–Roch follows from L(0) ∼= C and L(K) ∼= Cg. Take then D > 0,
that is D = ∑N

i=1 ni[xi] with ni > 0 for all i = 1, . . . , N. Define the complex vector space V
spanned by N-tuples ( f1, . . . , fN) of the form

fi =
ci,ni

zni
+ · · ·+ ci,1

z
(4.37)

for some constants ci,ni , . . . , ci,1 ∈ C. Clearly, dim V = deg(D). Define the linear map (the
‘principal part map’)

π : L(D) −→ V , (4.38)

that sends a meromorphic function f to the N-tuple ( f1, . . . , fN) of negative-power portion of
the Laurent series at (x1, . . . , xN), where the Laurent series is taken with respect to some local
coordinate10 around xi. The function fi is called the principal part of f at xi (with respect to
the fixed local coordinates). Notice that, for any f ∈ L(D), its Laurent series at xi is a O(z−ni);
hence, the definition is well-posed. By the rank-nullity theorem from linear algebra,

ℓ(D) = dimL(D) = dim ker(π) + dim im(π) . (4.39)

Magnus Gösta
Mittag-Leffler
(1846–1927)

Notice that f ∈ ker(π) if and only if f has no poles, hence it is
constant. Thus, ker(π) = C and ℓ(D) = 1 + dim im(π). Our goal
is then to understand W := im(π), and in particular to show that
dim W = deg(D)− g+ ℓ(K−D). Geometrically, we are looking for a
meromorphic function f with prescribed principal parts ( f1, . . . , fN)

at (x1, . . . , xN) and no other poles. This is known as the Mittag-
Leffler’s problem. Solutions to the Mittag-Leffler’s problem can be
characterised as follows.

Lemma 4.15. The following are equivalent:

• There exists a meromorphic function f with prescribed principal parts
( f1, . . . , fN) at (x1, . . . , xN) and no other poles.
• ∑N

i=1 Resxi fi ·ω = 0 for all holomorphic form ω in X.

Sketch of the proof. Let f be a solution to Mittag-Leffler’s problem. According to the residue the-
orem, the sum of the residues, ∑N

i=1 Resxi( f · ω), equals zero for any holomorphic form ω on X.

10It is important to notice that Laurent expansion coefficients of a meromorphic function depend on the choice of
local coordinates. Here we fix once and for all local coordinates centred around each xi, and consider all expansions
with respect to such choice. However, different choices would produce the same result. For instance, a different choice
would give a new map π′ : L(D)→ V that is related to π by a linear automorphism of V. In particular, the quantities
we are interested in (such as dim ker(π) and dim im(π)) do not depend on such choice.
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Since f only has poles at the points (x1, . . . , xN), and the principal part at each xi is fi, the residue
of f · ω at xi equals the residue of fi · ω at the same point. This concludes one implication. The
converse is an application of Serre duality and is omitted. □

According to the lemma above, W = ker(ρ), where ρ is the linear map (the ‘residue’ map)

ρ : V −→ Ω(X)∗ , ρ( f1, . . . , fN)(ω) =
N

∑
i=1

Res
xi

fi ·ω . (4.40)

Again by the rank-nullity theorem, dim V = dim ker(ρ) + dim im(ρ). We already know that
dim V = deg(D), so we only have to prove that dim im(ρ) = g− ℓ(K− D). Since the dimension
of Ω(X) is g, this is equivalent to proving that dim coker(ρ) = ℓ(K − D). In order to compute
the cokernel of ρ, we can use one more linear algebra trick: coker(ρ) ∼= ker(ρ∗)∗, where ρ∗ is the
adjoint (or transpose) map:

ρ∗ : Ω(X) −→ V∗ , ρ∗(ω)( f1, . . . , fN) =
N

∑
i=1

Res
xi

fi ·ω . (4.41)

Since fi = O(z−ni), we deduce that ρ∗(ω) = 0 if and only if ω has a zero of order ≥ ni at xi for all
i = 1, . . . , N, which is the same as asking that div(ω) ≥ D. This proves that ker(ρ∗) = I(−D).
By Serre duality, the dimension of such space is precisely ℓ(K− D).

To summarise, we have constructed the exact sequence of complex vector spaces:

0 ker(π) L(D) V Ω(X)∗ coker(ρ) 0

O(X) I(−D)∗

π ρ

(4.42)

where π is the ‘principal part’ map and ρ is the ‘residue’ map. In turn, the exact sequence gives
the following dimension formula:

dimO(X)− dimL(D) + dim V − dim Ω(X) + dimI(−D) = 0 . (4.43)

The values dimO(X) = 1, dimL(D) = ℓ(D), dim V = deg(D), dim Ω(X) = g, dimI(−D) =

ℓ(K− D) conclude the proof.

Part ii. Consider now an arbitrary divisor D. We shall prove the Riemann–Roch inequality by
induction on deg(D−). If deg(D−) = 0, then D ≥ 0 and this is simply Part i. Suppose now
that deg(D−) > 0 and proceed by induction: take a point x in the support of D−. The induction
hypothesis implies that the Riemann–Roch inequality holds for D + [x]:

ℓ(D + [x])− ℓ(K− D− [x]) ≥ deg(D + [x])︸ ︷︷ ︸
=deg(D)+1

+1− g = deg(D) + 2− g . (4.44)

By lemma 3.16, the following inequalities hold:

ℓ(D) ≥ ℓ(D + [x])− 1 and ℓ(K− D) ≤ ℓ(K− D− [x]) + 1 . (4.45)

So the only scenario in which the inequality would not hold for D is when ℓ(D) ≥ ℓ(D + [x])− 1
and ℓ(K− D) ≤ ℓ(K− D− [x]) + 1. Let us proof that that this is not possible.
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By contradiction, suppose that this is the case. The two equalities imply that there exist a non-
trivial meromorphic function f and a non-trivial meromorphic form ω such that

f ∈ L(D + [x]) \L(D) and ω ∈ I(−D) \ I(−D− [x]) . (4.46)

Denoting by −n the coefficient of [x] in D (with n > 0), this is equivalent to say that f has a zero
of order exactly n− 1 at x, and ω has a pole of order exactly n at x. Hence, the meromorphic
form η := f · ω has a pole of order exactly 1 at x. In particular, Resx η ̸= 0. On the the other
hand, η does not have other poles: for any point y ̸= x, denoting by ny the coefficient of [y] in D,

ordy(η) ≥ ordy( f )︸ ︷︷ ︸
≥−ny

+ ordy(ω)︸ ︷︷ ︸
≥ny

≥ 0 . (4.47)

We deduce that the sum of all residues of η equals Resx η ̸= 0, in contradiction with the residue
theorem.

Part iii. Finally, for the last part of the proof we use a clever trick to obtain the desired equality
for an arbitrary divisor D: We substitute K − D for D in the inequality proved in Part ii. Since
ℓ(K− D) = ℓ(−D) by Serre duality, we deduce that

ℓ(K− D)− ℓ(D) ≥ deg(K− D)︸ ︷︷ ︸
=2g−2−deg(D)

+1− g = g− 1− deg(D) . (4.48)

Reversing the inequality, we find ℓ(D)− ℓ(K−D) ≤ deg(D)+ 1− g. Together with the inequality
from Part ii, we find the Riemann–Roch equality.
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5. The Abel–Jacobi theory

Lecture 11

May 16
th, 2024 In the previous chapters, we introduced the concept of the divisor group of a compact Rie-

mann surface X, which provides a natural framework to filter meromorphic functions into finite-
dimensional vector spaces. The dimension of these spaces is computed by the Riemann–Roch.

A related ‘smaller’ group is that of divisors of degree zero up to linear equivalence, the degree
zero Picard group Pic0(X). Geometrically, it measure ‘how many’ degree zero divisors are not
principal. A natural question arises:

How can we compute Pic0(X)?

The answer is provided by the Abel–Jacobi theorem. A central role in the Abel–Jacobi theory is
played by the integration of differential forms over cycles, which also played a crucial role in the
proof of the Riemann–Roch theorem.

5.1. Periods and Riemann bilinear relations. In the previous section we have sketched the idea
of integrations of differential forms along paths on Riemann surfaces:∫

γ
ω (5.1)

for γ : [0, 1] → X a path and ω a differential form that is smooth along γ. This makes sense
locally thanks to the chain rule for integration and thanks to the additivity of the integral. As in
the local case, integration of differential forms is invariant under deformation.

We can also talk about integrals of wedge products of differential forms: if locally ω
loc
= p(x, y)dx+

q(x, y)dy and η
loc
= u(x, y)dx + v(x, y)dy, then ω ∧ η

loc
= (p · v− q · u)dx dy, which can be integrated

over the Riemann surface: ∫
X

ω ∧ η . (5.2)

Notice that, if both ω and η are holomorphic (under the identification z = x + iy), then ω∧ η = 0.
However, it we get a non-trivial result by integrating ω ∧ η̄. Integration over the whole Riemann
surface and integration along contours are intimately linked to each other. This is known are
Riemann’s bilinear identity. In order to state it, we need to recall some basic facts about contours
on compact Riemann surfaces.

Let X be a genus g Riemann surface. Topologically, it is identified with the identification polygon

a1b1 ā1b̄1 · · · agbg āgb̄g . (5.3)

Indeed, each word aibi āi b̄i is a topological torus, and the concatenation of g such words is pre-
cisely the connected sum of g tori. Throughout this section, we will work on the fixed identifi-
cation polygon and perform most of the computations on the fundamental domain P associated
to it. A classical result from algebraic topology shows that shows that the homology group
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•

b̄1

ā1

b1

a1 b̄2

ā2

b2

a2

•
a1 a2b1 b2

Figure 23. A surface of genus 2 with its identification polygon and the induced
cycles on the surface.

H1(X, Z) is generated by the loops { ai, bi }g
i=1. For any differential form η, its integrals

Ai(η) :=
∮

ai

η , Bi(η) :=
∮

bi

η , (5.4)

for i = 1, . . . , g are called the A- and B-periods of η (with respect to the chosen basis { ai, bi }g
i=1).

Theorem 5.1 (Riemann bilinear identity). Let ω and η be two closed11 differential forms on X. Then∫
X

ω ∧ η =
g

∑
i=1

(
Ai(ω)Bi(η)− Ai(η)Bi(ω)

)
. (5.5)

Proof (for the reader familiar with differential calculus). We first observe that the integral over X can
be written as an integral over the fundamental domain P of the identification polygon. Moreover,
it is easy to check that, sine both ω and η are closed, we can write η∧ω inside P as the differential
of the 1-form fω · η, where fω is a primitive of ω:

fω(x) :=
∫ x

x0

ω (5.6)

for a path inside P from an arbitrary base-point x0 to x. It is important to remark that fω is
single-valued on P, but not on X (in other words, it depends on the choice of the identification
polygon). Since P is simply connected, there is only one homotopy class of such path, hence fω

is a well–defined smooth function.

If x1, x2 ∈ ∂P are points on the boundary of the domain P that correspond to the same point in
X, then there is a unique homotopy class of contour γ ⊂ P joining them; this contour correspond
to a homotopy class in X that we denote with the same symbol, and∮

γ
ω = fω(x2)− fω(x1) . (5.7)

We can now apply Stokes’ theorem to compute the integral over P:∫
X

ω ∧ η =
∮

∂P
fω · η =

g

∑
i=1

(∫
ai

+
∫

āi

)
fω · η +

g

∑
i=1

(∫
bi

+
∫

b̄i

)
fω · η . (5.8)

11Recall that a differential form is closed if its exterior derivative is zero. The differential of a 1-form locally defined

as ν
loc
= u dx + v dy is simply defined as dν

loc
= (−uy + vx)dx dy.
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Consider the i-th summand in the first sum. For any pair of points x ∈ ai and x′ ∈ āi, we have
fω(x′)− fω(x) =

∮
bi

ω = Bi(ω):

ai
bi

āi

b̄i

•
x

•x
′

• •

•

•

•

(5.9)

Moreover, the differential form η is single valued on X. Hence, the i-th summand in the first sum
can be rewritten as∫

ai

fω(x) · η(x) +
∫

āi

fω(x′) · η(x′) =
∫

ai

fω(x) · η(x)−
∫

ai

(
fω(x) + Bi(ω)

)
· η(x)

= −Bi(ω)
∫

ai

η = −Ai(η)Bi(ω) . (5.10)

The minus sign in the second equality is due to the fact that āi is the cycle with opposite direction
to ai in X. A similar computation holds for the second sum. All together, we get the thesis. □

The Riemann bilinear identity gives some nice consequence when applied to holomorphic forms.

Proposition 5.2 (Riemann bilinear inequality). For any holomorphic form ω ∈ Ω(X),

ℑ
(

g

∑
i=1

Ai(ω)Bi(ω)

)
≤ 0 , (5.11)

with the equality being valid if and only if ω is identically zero.

Proof. Consider the Riemann bilinear identity for with η = ω̄. If ω
loc
= f (z)dz, it is easy to check

that ω ∧ ω̄
loc
= −2i| f (z)|2 dx dy. Thus, 1

2i

∫
X ω ∧ ω̄ ≤ 0, with the equality being true if and only if

ω is identically zero. On the other hand, the Riemann bilinear identity implies that

1
2i

∫
X

ω ∧ ω̄ =
1
2i

g

∑
i=1

(
Ai(ω)Bi(ω̄)− Ai(ω̄)Bi(ω)

)
. (5.12)

Since Ai(ω̄) = Ai(ω) (ans similarly for B-periods), we find the thesis. □

As simple consequence of the above result is a criterion for establishing the triviality of holomor-
phic forms.

Corollary 5.3. Let ω ∈ Ω(X) be a holomorphic form on X. Then ω is identically zero if an only if all its
A-periods (or all its B–periods) vanish.
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Since the space of holomorphic forms is g-dimensional, we can collect the values of Ai(ω) and
Bi(ω) into two g× g matrices. That is, fix a basis {ω1, . . . , ωg } of Ω(X) and set

A :=
(

Ai(ωj)
)

1≤i,j≤g
, B :=

(
Bi(ωj)

)
1≤i,j≤g

. (5.13)

These matrices are called the period matrices with respect the given basis of Ω(X) and H1(X, Z).
The results above can be re-stated purely in terms of period matrices, and are collectively known
are Riemann bilinear relations.

Corollary 5.4 (Riemann bilinear relations). The matrices A and B are invertible and are such that:

(1) ATB = BTA;
(2) the matrix τ := A−1B is symmetric and its imaginary part is positive definite.

Here MT denotes the matrix transpose of M.

Proof. The invertibility is just a restatement of corollary 5.3. The identity ATB = BTA is the
Riemann bilinear identity applied to ωi ∧ωj = 0. As for τ, the symmetry is again a consequence
of the Riemann bilinear identity, while the imaginary part being positive definite is a restatement
of the Riemann bilinear inequality. □

Exercise 5.1. For a fixed identification polygon decomposition, prove that there exists a choice of basis of
holomorphic differentials (ω1, . . . , ωg) such that∫

ai

ωj = δi,j . (5.14)

In this case, it is customary to denote the matrix of B-periods as τ = (τi,j)1≤i,j≤g, where τi,j =
∮

bi
ωj.

Prove that the matrix τ is symmetric and its imaginary part is positive-definite.

The space of g× g symmetric matrices over the complex numbers whose imaginary part is positive definite
is called the Siegel upper-half space of degree g, and it generalises the upper-half space H (corresponding
to g = 1) to higher dimensions. Lie-theoretically, it is the symmetric space associated to the symplectic
group Sp(2g, R).

We have just seen how A- and B-periods play a special role in the theory of integration on
Riemann surfaces. Since the cycles { ai, bi }g

i=1 for a basis of the first homology group of X, it is
natural to introduce the group homomorphism

H1(X, Z) −→ Ω(X)∗ , γ 7−→
∮

γ
. (5.15)

Recall that the first homology group is the group generated by piecewise smooth oriented con-
tours (i.e. closed paths), up to equivalence defined as γ1 ∼ γ2 if and only if there exists a 2-cell
c in X with ∂c = γ1 − γ2. The opposite of a contour is the contour oriented in the opposite
direction.
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•

•

x0

x
γx

γ′x

• x0

γx − γ′x

Figure 24. Two choices of paths γx and γ′x from x to x0 which differ by a closed
path.

Definition 5.5. A period on a compact Riemann surface X is a linear map λ ∈ Ω(X)∗ of the form
λ =

∮
γ for some γ ∈ H1(X, Z).

It is not hard to show that the space of periods on X, denoted Λ(X) is a lattice in Ω(X)∗. In other
words, there exists λ1, . . . , λ2g ∈ Λ(X) that are linearly independent over R such that

Λ(X) =
{

µ1λ1 + · · · µ2gλ2g
∣∣ µi ∈ Z

}
. (5.16)

For a fixed basis { ai, bi }g
i=1 as above, we can choose λi =

∮
ai

and λg+i =
∮

Bi
for all i = 1, . . . , g.

Definition 5.6. Define the Jacobian of X as the group Ω(X)∗ modulo its subgroup Λ(X) of
periods:

J(X) := Ω(X)∗/Λ(X) . (5.17)

As a group, it is isomorphic to the complex torus Cg/Z2g, which is isomorphic to (S1)2g.

Closed paths on a compact Riemann surface naturally leads to the definition of the Jacobian. We
can then ask ourselves: what happens when we consider non-closed paths? To this end, fix a
base-point x0 ∈ X, and for any point x ∈ X choose a path γx from x0 to x. Thus, we get a map

AJ : X −→ Ω(X)∗ , AJ(x)(ω) =
∫

γx

ω , (5.18)

which is a group homomorphism. The map depends on the choice of base-point x0 and on the
choice of path γx from x to x0. However, for any two choices γx and γ′x of paths from x0 to x,
the difference γx − γ′x is a closed path (cf. figure 24). Hence,

∮
γx−γ′x

ω is period, and the map AJ
descends to the Jacobian:

AJ : X −→ J(X) , AJ(x)(ω) =

[∫
γx

ω

]
. (5.19)

Abusing notation, we denote it with the same symbol. It is called the Abel–Jacobi map, and it
does not depend on the choice of path from x0 to x. However, it still depends on the choice of
x0.

We can now extend the map by linearity to the divisor group, and denote by AJ0 its restriction
to the subgroup Div0(X) of degree-zero divisors.
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Lemma 5.7. The Abel–Jacobi map
AJ0 : Div0(X) −→ J(X) (5.20)

does not depend on the choice of base-point x0.

Proof. Let x0 and x′0 be two base-points and denote the associated Abel–Jacobi maps as AJ0 and
AJ′0 respectively. Choose a path γ from x0 to x′0. Then

AJ0(x)(ω)−AJ′0(x)(ω) =

[∫
γ

ω

]
(5.21)

and denote the right-hand side as j ∈ Jac(X). As a consequence, we find that for all D =

∑x nx [x] ∈ Div(X):
AJ0(D)(ω)−AJ′0(D)(ω) = ∑

x
nx j = deg(D) j . (5.22)

We conclude that AJ0 ≡ AJ′0 on Div0(X). □

The proofs of

Abel’s and
Jacobi’s theorems
are not required
for the exam (but
the content of
their theorems is).

5.2. Abel’s and Jacobi’s theorems. The Abel–Jacobi map AJ0 : Div0(X)→ J(X) is a well-defined
group homomorphism that does not depend on any choice. Abel’s and Jacobi’s theorem describe
its kernel and cokernel respectively.

Niels Henrik Abel
(1802–1829)

Theorem 5.8 (Abel’s theorem). Let D ∈ Div0(X) be a degree-zero
divisor. Then D is principal if and only of AJ0(D) = 0. In other words,
ker(AJ0) = PDiv(X).

We are going to prove the two inclusions separately, starting with
PDiv(X) ⊆ ker(AJ0). To this end, we introduce the concept of
pushforward of differential forms and pullback of paths.

Fix a holomorphic map f : X → Y, and let ω be a meromorphic form on X. We define a mero-
morphic form f∗ω on Y (called the pushforward of ω along f ) as follows. Fix a point y ∈ Y with
local coordinates around w centred at y and zi centred at x1, . . . , xm for all xi in the fibre f−1(y).

We can assume that the function f locally looks like zi 7→ w = zki
i , and that ω

loc
= gi(zi) dzi. We

then set locally around y

f∗ω
loc
:=

m

∑
i=1

ki−1

∑
j=0

gi(ζ
j
i zi)

ki(ζ
j
i zi)ki−1

dw . (5.23)

Here ζi = e
2πi
ki is a ki-th root of unity. Intuitively, f∗ω is summing the differential forms ω over at

the preimages, according to the local form of f . In terms of Laurent series, a simple computations
shows that for ω = ∑n cnzn dz we find

f∗ω =
m

∑
i=1

∑
ni

cniki−1wni dw . (5.24)

Notice that, if f at the preimages of y (i.e. ki = 1 for all i = 1, . . . , m), then f∗ω is simply the sum
of the differential forms at the preimages.
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Another important tool is the pullback of paths. Given f as before and γ a path in Y, we can pull
it back to d paths in X by using the path-lifting properties of covers, as long as the path does not
go through any of the branch points. Even if it does, we can delete those points, lift the path in
X, and take the closure. We denote the pullback of a path γ defined in this way by f ∗γ.

The relation between pushforward of holomorphic forms and pullback of paths is given by the
following result.

Lemma 5.9. Let f : X → Y be a non-constant holomorphic map, ω a holomorphic form on X, and γ a
path on Y. Then ∫

f ∗γ
ω =

∫
γ

f∗ω . (5.25)

Sketch of the proof. Since the ramification points are finite, they have measure zero and thus do
not affect the integral. We may assume that the path does not pass through the branch points. In
this case, the left-hand side is just an integral along the d lifts of γ. Recall that the pushforward
of a differential form around an unramified point is simply the sum of the differential forms at
the preimages. This means the right-hand side is also the sum of the integrals of ω along the
lifted paths of γ. □

We can now prove one of the directions of Abel’s theorem.

Proof of Abel’s theorem: PDiv(X) ⊆ ker(AJ0). Let D = div( f ) be a principal divisor associated to
a holomorphic function f : X → P1 of, say, degree d. Denote the set of zeros and poles of f as
{ z1, . . . , zd } and { p1, . . . , pd }, where points are counted with multiplicity (i.e. repetitions are
allowed). Thus div( f ) = ∑d

k=1(zk − pk). Given a base-point x0 ∈ X, choose a path αk from x0 to
zk and a path βk from x0 to pk, so that the Abel–Jacobi map reads

AJ0(D)(ω) =

[
d

∑
k=1

(∫
αk

−
∫

βk

)
ω

]
. (5.26)

Consider now a path γ in P1 from 0 to ∞. Without loss of generality, we can suppose that γ does
not pass through any of the branch points of f . Then we can write f ∗γ = γ1 + · · ·+ γd, where
γk is a path on X from zk to pk. Since αk − βk + γk is closed (see figure 25), we find that

AJ0(D)(ω) = −
[

d

∑
k=1

∫
γk

ω

]
= −

[∫
f ∗γ

ω

]
. (5.27)

Thanks to lemma 5.9, we find AJ0(D)(ω) = −[
∫

γ f∗ω]. As ω is holomorphic, so is f∗ω. But the
only holomorphic form on P1 is the identically-zero form, hence AJ0(D)(ω) = 0. □

The converse statement is more involved.

Proof of Abel’s theorem: ker(AJ0) ⊆ PDiv(X). Let D = ∑d
k=1 nk[xk] be a degree 0 divisor such that

AJ0(D) = 0. We want to show that there exists a meromorphic function f such that D = div( f ).
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•

•
•

x0

zk
pk

•

•

0

∞

f

X

P1

Figure 25. The closed path αk− βk +γk in the ‘ker ⊆ PDiv’ part of Abel’s theorem.

We proceed as follows. We first construct a meromorphic form ω such that:

(1) ω has simple poles at xk for all k = 1, . . . , d, and is holomorphic at any other point;
(2) Resxk ω = nk for all k = 1, . . . , d;
(3) the periods Ai(ω) and Bi(ω) are integral multiples of 2πi for all i = 1, . . . , g.

Before proving the existence of such a form, let us show how it implies the thesis. We define the
meromorphic function

f (x) = exp
(∫

γx

ω

)
, (5.28)

where γx is any path from the base-point x0 to x. Since the periods are integral multiples of
2πi, the function does not depend on the choice of path. Hence, we only need to show that
f is meromorphic and div( f ) = D. Clearly, f is holomorphic and non-vanishing where ω is
holomorphic. Consider then a pole xk of ω. Since ω has a simple pole with residue nk, we
deduce that locally around xk we have ω = ( nk

z + g(z))dz for some holomorphic function g(z).
Thus, locally around xk the function f will be of the form f = znk eh(z) for some holomorphic
function h(z). The computation shows precisely that div( f ) = D.

We are then left with proving the existence of a meromorphic form ω satisfying (1-2-3). The
existence of a meromorphic form η satisfying (1-2) is a consequence of Riemann–Roch (and
simply uses the fact that D has degree zero). Notice that for any such η and any holomorphic η′,
then η − η′ still satisfies (1-2). In other words, writing η′ = ∑

g
i=1 ci ωi, we are reduced to show

that we can properly choose c = (c1, . . . , cg) such that ω := η −∑
g
i=1 ci ωi satisfies (3) as well.
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First, we can assume without loss of generality that the curves ai and bi do not pass through the
poles of η. Define the holomorphic functions

fωj(x) :=
∫ x

x0

ωj , j = 1, . . . , g (5.29)

where the integral is over a path from x0 to x inside the fundamental domain P. Moreover, define
the scalars

ρj := ∑
x∈X

Res
x

fωj η , j = 1, . . . , g . (5.30)

Thanks to the residue theorem, Stokes’ theorem and the Riemann bilinear identity, the scalar ρi

can be expressed as

ρj =
1

2πi

∮
∂P

fωj η =
1

2πi

∫
X

ωj ∧ η =
1

2πi

g

∑
i=1

(
Ai(ωj)Bi(η)− Ai(η)Bi(ωj)

)
. (5.31)

On the other hand, we can directly compute the residue thanks to the known properties of fωj

and η. Indeed, fωj is holomorphic and η has only simple poles at xk with residue nk. Thus:

ρj =
d

∑
k=1

nk fωj(xk) =
d

∑
k=1

nk

∫ x

x0

ωj . (5.32)

Modulo the period lattice, this is precisely the AJ0(D)(ωi). Since by hypothesis AJ0(D) = 0, we
deduce that there exists γ such that the functional ∑d

k=1 nk
∫ x

x0
is precisely

∮
γ. We can express γ

in the basis (ai, bi)
g
i=1 as γ = ∑

g
i=1(µiai − νibi) for some µi, νi ∈ Z, so that

ρj =
g

∑
i=1

(
µi Ai(ωj)− νiBi(ωj)

)
. (5.33)

All together, we deduce that
g

∑
i=1

Ai(ωj)(Bi(η)− 2πi µi)−
g

∑
i=1

Bi(ωj)(Ai(η)− 2πi νi) = 0 . (5.34)

In matrix form, the above collection of equation reads ATβ− BTα = 0, where β is the column
vector whose i-th entry is Bi(η)− 2πiµi and similarly for α.

Consider now the linear maps

Cg C2g C2g Cg

v

(
Av
Bv

) (
v
w

)
ATv− BTw

φ ψ

(5.35)

which by corollary 5.4 satisfy ψ ◦ φ = 0. Moreover, since both A and B are full rank, we deduce
that ker(ψ) = im(φ). As the vector composed by β and α is in ker(ψ), we find that it is realised as
the image via ψ of some c ∈ Cg. It is then easy to show that c is the desired vector of coefficients:
setting ω := η −∑

g
i=1 ci ωi, then

Ai(ω) = 2πi νi and Bi(ω) = 2πi µi (5.36)

are integral multiples of 2πi. □
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Geometrically, Abel’s theorem answers a natural question regarding meromorphic functions on
compact Riemann surface. That is, given a degree zero divisor D on X, is there a meromorphic
function f satisfying D = div( f )? The answer is affirmative if and only if AJ0(D)(ω) = 0 for all
holomorphic forms ω.

Exercise 5.2. Prove the Weierstraß gap theorem on the torus C/(Z + τZ) using Abel’s theorem.

An immediate consequence of Abel’s theorem is that the Abel–Jacobi map descends to an injec-
tive group homomorphism from the Picard group of degree-zero divisors up to principal divisors
to the Jacobian:

AJ0 : Pic0(X) −→ J(X) . (5.37)

Again, abusing notation, we denote it with the same symbol. Jacobi’s theorem asserts that the
map is also surjective.

Carl Gustav Jacob Jacobi
(1804–1851)

Theorem 5.10 (Jacobi’s inversion theorem). The Abel–Jacobi map

AJ0 : Pic0(X) −→ J(X) (5.38)

is surjective.

Proof. As the map AJ0 is a group morphism, it suffices to show that
the image of AJ0 contains an open set. This is because on a connected
topological group G (such as J(X)), every non-trivial open subgroup
H is automatically the whole group: H = G.

We proceed as follows. Pick a base point x0 ∈ X and consider the map I : Xg → J(X) defined as

I(x1, . . . , xg) = AJ0

(
g

∑
i=1

(xi − x0)

)
. (5.39)

In order to prove that the image of AJ0 contains an open set, it suffices to show that the image
of I contains an open set. Because both Xg and J(X) are g-dimensional complex manifolds, one
approach would be to show that there exists a point (x1, . . . , xg) ∈ Xg where the Jacobian matrix
of I is invertible. The inverse function theorem will then tell us that the image contains an open
set. To this end, fix a basis (ω1, . . . , ωg) of Ω(X), which gives an identification of Ω(X)∗ with Cg.
The map I then reads

I(x1, . . . , xg) =


∑

g
i=1

∫ xi
x0

ω1
...

∑
g
i=1

∫ xi
x0

ωg

 , (5.40)

where the path is an arbitrary path from x0 to xi. For ease of notation, denote the j-th row of
I as Ij. Let us choose local coordinates zi centred at xi; then the Jacobian matrix of I in local
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coordinates reads

JacI(x1, . . . , xg) =


ω1(x1)

dz1
· · · ω1(xg)

dzg
...

. . .
...

ωg(x1)
dz1

· · · ωg(xg)
dzg

 . (5.41)

The above expression needs an explanation. In coordinates, Ij is given by ∑
g
i=1

∫ xi
x0

ωj , and
if we differentiate it with respect to the xk coordinate, all terms except for the k-th summand
vanish since they do not depend on xk. The derivative of the k-th summand with respect to the
coordinate xk can be computed by writing ωj locally in the coordinate zk as ωj = hj,k(zk)dzk. In
this case, the expression for the derivative is computed as

∂Ij

∂xk
=

∂

∂xk

∫ xk

x0

hj,k(zk)dzk , (5.42)

which from the fundamental theorem of calculus equals hj,k(zk). This motivates the notation
ωj(xk)

dzk
in place of hj,k(zk).

We now have to show that there exists a point (x1, . . . , xg) ∈ Xg where the above matrix in
invertible. We start by choosing x1 ∈ X as a point where the form ω1 does not vanish. We then
modify the basis of Ω(X) as follows: we replace ωj for j ≥ 2 with

ω′j := ωj −
ωj(x1)

ω1(x1)ω1
. (5.43)

The definition is well-posed, since ω1(x1) ̸= 0. With this choice, we deduce that ωj(x1)
dz1

= 0 for all
j ≥ 2, and is different from zero for j = 1. In other words, the Jacobian is of the form

JacI(x1, . . . , xg) =



ω1(x1)
dz1

ω1(x2)
dz2

· · · ω1(xg)
dzg

0 ω2(x2)
dz2

· · · ω2(xg)
dzg

...
...

. . .
...

0 ωg(x2)
dz2

· · · ωg(xg)
dzg

 with
ω1(x1)

dz1
̸= 0 . (5.44)

We then repeat this process again, by choosing x2 ∈ X as a point where ω′2 does not vanish and
modifying the basis elements ω′j for j ≥ 3 accordingly. By repeating this possess g times, we find
g points (x1, . . . , xg) ∈ Xg and a basis of holomorphic differentials such that the Jacobian matrix
of I at (x1, . . . , xg) is upper-triangular with non-vanishing elements along the diagonal, showing
that it is indeed invertible. □

We can collect Abel’s and Jacobi’s results in a unique statement:

Theorem 5.11 (Abel–Jacobi theorem). The Abel–Jacobi map is a group isomorphism:

Pic0(X) ∼= J(X) . (5.45)

The Abel–Jacobi theorem completely characterise the Picard group of degree zero divisors mod-
ulo principal divisors, i.e. ‘how far’ degree zero divisors are from being principal: it is a complex
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g-dimensional torus. A natural question would be to characterise the whole Picard group. A
simple computation shows that, after choosing a base-point x0 ∈ X, the map

Div(X) −→ Div0(X)×Z , D 7−→
(

D− deg(D)[x0], deg(D)
)

(5.46)

is a group isomorphism that descends to the Picard group: Pic(X) ∼= Pic0(X)×Z. As a conse-
quence, we deduce the following characterisation of the full Picard group:

Pic(X) ∼= J(X)×Z . (5.47)

An interesting problem related to the Abel–Jacobi map, known as Schottky’s problem, asks
for necessary and sufficient conditions for a g-dimensional complex torus to be the Jacobian
of a compact genus g Riemann surface. Interestingly, the problem has deep relations with the
Kadomtsev–Petviashvili equation, a partial differential equation which describes non-linear wave
motion.

A simple example of interaction between wave equations and Riemann surfaces is provided by
the following exercise.

Exercise 5.3. Consider the Korteweg–de Vries (KdV) equation

ut = 6uux − uxxx , (5.48)

which describes the motion of a wave u = u(x, t) on shallow water surfaces. Prove that any periodic
solution of KdV in the form of a travelling wave u = u(x− ct) has the form

u = 2℘(x− ct− x0; Λ)− c
6

(5.49)

for an arbitrary lattice Λ and x0 ∈ C.
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6. Hurwitz theory

Lecture 12

May 23
rd, 2024 We now introduce the counting problem for maps of Riemann surfaces: fixing a compact Rie-

mann surface Y and a finite number of points y1, . . . , ym ∈ Y, how many maps to Y have a
specified ramification behaviour over the chosen branch points and are unramified elsewhere?
Natural questions that arise are:

(1) Is the number of such maps finite?
(2) Does it depend on the Riemann surface Y?
(3) Does it depend on the configuration of the points yi?

Fortunately, the answers are quite favourable: the number is always finite, it depends only on
the genus of Y; and it also depends on the choice of ramification over the points yi, but not on
the positions of the points. A key reason for these favourable answers is that maps of Riemann
surfaces are essentially “controlled by topology”.

6.1. Hurwitz numbers. To start with, we introduce a combinatorial gadget which will be used
to control the ramification behaviour over the chosen branch points.

Definition 6.1. Let d > 0 be an integer. A partition of d is an ordered tuple of positive integers
µ = (µ1, . . . , µℓ) such that µ1 ≥ · · · ≥ µℓ > 0 and ∑ℓ

i=1 µi = d. The elements µi are called the
parts of µ. The sum d is called the size and denoted |µ|. The number ℓ of parts in µ is called the
length and denoted ℓ(µ). We write µ ⊢ d to denote a partition of d.

Example 6.2. There are five distinct partitions of size 4: (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1).
Their lengths are respectively one, two, two, three, and four.

Let f : X → Y be a holomorphic map between compact Riemann surfaces of degree d and fix a
point y ∈ Y. For all points x ∈ f−1(y), we have a multiplicity µx( f ) and we can arrange all such
integers in a partition µy. This is called the ramification profile of f over y. Since the sum of
the multiplicities is the degree, we have that µy ⊢ d. Notice that if y is not a branch point, then
µy = (1, . . . , 1), i.e. the partition consisting of ‘d ones’.

Example 6.3. Consider the degree d map [z0 : z1] 7→ [zd
0 : zd

1] from P1 to itself. The branch points
are 0 and ∞, whose preimage are 0 and ∞ respectively both with multiplicity d. Thus, in both
cases the ramification profile is the partition (d).

Another important feature of Hurwitz numbers is that we are interested in counting maps up to
automorphism.

Definition 6.4. Two holomorphic maps of f : X → Y and f ′ : X′ → Y between compact Riemann
surfaces are called isomorphic if there is a biholomorphism φ : X → X′ such that f = f ′ ◦ φ. In
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other words, the following diagram commutes.

X X′

Y

φ

f f ′
(6.1)

An automorphism of f : X → Y is a biholomorphism φ : X → X such that f = f ◦ φ. The group
of automorphisms of f is denoted Aut( f ).

We are now ready to define Hurwitz numbers.

Definition 6.5 (Hurwitz numbers). Let Y be a compact Riemann surface of genus h. Fix points
y1, . . . , ym ∈ Y and let µ1, . . . , µm be partitions of a positive integer d. We define the Hurwitz
number as

H
g d→h

(µ1, . . . , µm) := ∑
[ f ]

1
|Aut( f )| (6.2)

where the sum runs over all isomorphism class of f : X → Y where:

(1) X is a compact Riemann surface of genus g,
(2) f : X → Y is a homomorphic map of degree d,
(3) the points y1, . . . , ym are the branch locus of f ,
(4) the ramification profile of f over yi is µi.

A map f satisfying (1–4) is called a Hurwitz cover for the discrete data (g, h, d, µ1, . . . , µm).

•

•
•••

••

X

f

•
y1

•
y3

•
y2

µ1 = (5)

µ3 = (3, 1, 1)
µ2 = (3, 1, 1)

Y

Figure 26. A schematic picture of a Hurwitz cover of degree 5 and three branch
points with ramification profiles (5), (3, 1, 1) and (3, 1, 1).
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Notice that, for Hurwitz covers to exist, the discrete data must satisfy the Riemann–Hurwitz
formula (theorem 2.19):

2g− 2 = d(2h− 2) +
m

∑
i=1

ℓ(µi)

∑
j=1

(µi,j − 1) , (6.3)

where we set µi = (µi,1, µi,2, . . . ) for the elements of the i-th partition. In particular, the notation
is redundant: the degree d can be read out of the sizes of all partitions µ1, . . . , µm, and the genus
g of the cover can be deduced from the Riemann–Hurwitz formula.

We also point out that the above definition assumes various claims:

• the automorphism group Aut( f ) is finite,
• there are finitely many isomorphism classes Hurwitz covers for a given discrete set of data,
• Hurwitz numbers only depend on the genus of the base Y and the ramification profiles, but

not on the position of the branch points (hence the notation on the left-hand side).

Finiteness of the automorphism group can be deduced from the Riemann–Hurwitz formula. The
other properties will be deduced a posteriori from the monodromy representation.

Exercise 6.1. Prove that

H
0 d→0

(
(d), (d)

)
=

1
d

. (6.4)

� Hint. Choose y1 = 0 and y2 = ∞ on the target P1. Write down all possible maps f : P1 → P1 branched over 0

and ∞, and show that they are all isomorphic. Can you write down the automorphism group of f ?

It will prove useful to allow the source Riemann surface to be disconnected. We call the corre-
sponding count a disconnected Hurwitz number and denote it by H•

g d→h
(µ1, . . . , µm).

Before proceeding further, let us pause to consider the fact that we have not yet defined the
genus of a disconnected Riemann surface. If you are inclined to assume that the genus should
be the sum of the genera of the connected components, recall that there is another fundamental
topological invariant for surfaces, the Euler characteristic, which is naturally additive under
disjoint unions if defined by the usual formula (1.40). We then define the genus of a disconnected
surface as the value g such that the formula χ = 2− 2g. still holds. It is easy to show that, if the
connected components of a disconnected surface X are X1, . . . , Xn, then

g = g1 + · · ·+ gn + 1− n , (6.5)

where gi is the genus of Xi.

6.2. Monodromy representation: from geometry to group theory. The natural question we now
try to answer is:

How can we compute Hurwitz numbers?
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As mentioned earlier, there is a natural topological approach to Hurwitz covers, which (following
Cavalieri–Miles) we might call the IKEA approach.

Suppose you ordered your preferred Hurwitz cover f : X → Y online, associated with the discrete
data (g, h, d, µ1, . . . , µm). To save on shipping costs, the warehouse cuts Y along appropriate
segments to obtain a single polygon P0 (i.e. a topological disc). If the branch locus Brnch f is
contained within the cuts, then cutting X along the inverse image of the cuts produces d disjoint
identical copies of P0, which, with Scandinavian precision, would be labelled P1, . . . , Pd. What
you receive is a box containing these d + 1 discs and an assembly instruction manual.

One way to provide assembly instructions is to specify, for every loop on Y, its lifts to X. For
instance, suppose that a loop γ exits P0 at a point x and re-enters it at another point x′. Suppose
you are also informed that when you lift γ starting from polygon P1, you end up in polygon P3.
This information tells you that you should glue the points x and x′ together, and that you should
glue the point corresponding to x in P1 to the point corresponding to x′ in P3. It is easy to imagine
that if you know such information for every possible loop, you could eventually glue back all
sides of P0 to reconstruct Y and all sides of the various Pk’s to obtain X. While at first this seems
like an overwhelming amount of information to manage, because the endpoints of lifts of loops
are invariant under homotopy, all such information is contained in a group homomorphism

ρ : π1(Y×, y0) −→ Sd (6.6)

called the monodromy representation of the cover f . Here Y× := Y \ { y1, . . . , ym } is the surface
Y removed of all the branch points, y0 ∈ Y× is an arbitrary base-point, and Sd is the symmetric
group of d elements.

To properly define the above map (in the case of possibly disconnected domains), proceed as
follows. Denote the preimages of y0 as f−1(y0) = { x1, . . . , xd }. There are exactly d distinct
preimages, since f is unramified at every point of Y×. For any loop α ∈ π1(Y×, y0), there exists a
unique lift12 α̃k in X that starts at xk. The end-point of α̃k must be in the fibre over y0, so the index
k must be permuted to another index in { 1, . . . , d }. In other words, there exists a permutation
σα ∈ Sd such that α̃k(1) = xσ(k) (see figure 27 for an example). The monodromy representation is
precisely defined as

ρ(α) := σα . (6.7)

One can check that the map so defined is a group homomorphism. Moreover, for every loop γi

around yi one can show that the cycle type of the permutation ρ(γi) is exactly µi. That is, ρ(γi)

decomposes into disjoint cycles of length (µi,1, µi,2, . . . ).

It should be noted that, in order to define ρ, we fixed a base-point y0 and a labelling { x1, . . . , xd }
of the preimage of y0. A Hurwitz cover with such a choice is called a a y0-labelled Hurwitz
cover. Two y0-labelled Hurwitz cover f : X → Y and f ′ : X′ → Y with f−1(y0) = { x1, . . . , xd }

12Recall the path lifting lemma. If p : E → B is a covering space, α : [0, 1] → B is any path, and e0 ∈ p−1(α(0)), then
there exists a unique path (called the lift) α̃ : [0, 1]→ E such that p ◦ α̃ = α and α̃(0) = e0.
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•

•

•

•

•
•

•

•

•

y0

y1

y2

x1

x2

x3

α

α̃2

f

X

Y

Figure 27. The lift of a path α on the base generates a permutation σα. In this
example, we have σα(2) = 3.

and f ′−1(y0) = { x′1, . . . , x′d } are called isomorphic if there exists a biholomorphism φ : X → X′

such that f ′ = f ◦ φ and φ(xk) = x′k.

The above construction shows that there exists a map of sets, called the monodromy map
isomorphism classes of y0-labelled Hurwitz covers

f : X → Y of degree d
with X possibly disconnected,

f branched over (y1, . . . , ym)

with ramification profiles (µ1, . . . , µm)

 M−→
{

group homomorphism ρ : π1(Y×, y0)→ Sd
ρ(γi) has cycle type µi
for γi a loop around yi

}
. (6.8)

We call elements on the domain set: y0-labelled isomorphism classes of possibly disconnected
covers of type (g, h, d, µ1, . . . , µm); elements in the codomain set are called: possibly disconnected
monodromy representations of type (g, h, d, µ1, . . . , µm).

Lecture 13

May 30
th, 2024 We can actually do much better: we can invert the monodromy map by gluing together polygons

following the instructions provided by a monodromy representation! In other words, to given a
monodromy representations ρ of type (g, h, d, µ1, . . . , µm) we can associate to it an isomorphism
class [ f ] of y0-cover of type (g, h, d, µ1, . . . , µm) such that M([ f ]) = ρ. This is essentially a refined
version of Riemann’s existence theorem.

Theorem 6.6. There is a one-to-one correspondence of sets
isomorphism classes of y0-labelled Hurwitz covers

f : X → Y of degree d
with X is possibly disconnected,

f branched over (y1, . . . , ym)

with ramification profiles (µ1, . . . , µm)

 1:1←→
{

group homomorphism ρ : π1(Y×, y0)→ Sd
ρ(γi) has cycle type µi
for γi a loop around yi

}
. (6.9)

One question still stands: how do we compute the original Hurwitz numbers? The main differ-
ence between Hurwitz covers (what we want to count) and y0-labelled Hurwitz cover (what is in
bijection with monodromy representations) is precisely in the labelling. It is not hard to prove
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that the counting of Hurwitz covers weighted by their automorphisms is precisely the number of
y0-labelled Hurwitz cover, divided by the total number of labelling: d!. In other words, we have
the following result.

Corollary 6.7 (Hurwitz numbers by counting monodromy representations). Let M•
g d→h

(µ1, . . . , µm)

be the set of possibly disconnected monodromy representations of type (g, h, d, µ1, . . . , µm). Then

H•
g d→h

(µ1, . . . , µm) =
1
d!
|M•

g d→h
(µ1, . . . , µm)| . (6.10)

In particular, we see that the definition of Hurwitz numbers is well-posed: the right-hand side
is finite (as the fundamental group π1(Y×, y0) is finitely generated and the symmetric group is a
finite group) and it only depends on the discrete data (g, h, d, µ1, . . . , µm).

6.3. Burnside formula: from group theory to representation theory. At first sight, the above
corollary might seem a complication rather than a simplification. The reason why counting
monodromy representations is much easier than counting Hurwitz covers is that the structure of
the fundamental group of a surface is fairly well-understood. Namely, if Y is a genus h curve,
then the fundamental group of the punctured Y× = Y \ { y1, . . . , ym } can be presented in a
standard way as a set of generators corresponding to loops winding around the handles, a set of
loops winding around the branch points, satisfying a simple relation.

To simplify the discussion, consider the case of a genus 0 base curve: Y = P1. In this case
the fundamental group of P1 \ { y1, . . . , ym } is presented in terms of m generators and a single
relation:

π1(P
1 \ { y1, . . . , ym } , y0) ∼= ⟨γ1, . . . , γm | γ1 · · · γm⟩ , (6.11)

where γi is a small loop around yi. The product is simply the concatenation of loops.

As a consequence, we deduce that a monodromy representation of type (g, 0, d, µ1, . . . , µm) is
simply a choice of permutations σ1, . . . , σm multiplying to the identity and having cycle type
(µ1, . . . , µm):

H•
g d→0

(µ1, . . . , µm) =
1
d!

∣∣∣{ σ1, . . . , σm ∈ Sd

∣∣∣ σ1···σm=id ,
σi has cycle type µi

}∣∣∣ . (6.12)

In other words, we have reduced the counting of Hurwitz covers to the counting of permutations
in the symmetric group satisfying certain properties!

The main trick to compute such numbers is the following. Consider the so-called group algebra
of the symmetric group:

C[Sd] :=

{
∑

σ∈Sd

aσ σ

∣∣∣∣∣ aσ ∈ C

}
. (6.13)

It has an algebra structure, where the vector space structure is defined as

λ

(
∑

σ∈Sd

aσ σ

)
+ µ

(
∑

σ∈Sd

bσ σ

)
= ∑

σ∈Sd

(
λaσ + µbσ

)
σ ∀λ, µ ∈ C , (6.14)
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and the (non-commutative) product is defined as the C-linear extension of the usual product on
Sd. For any µ ⊢ d, define

Cµ := { σ ∈ Sd | σ has cycle type µ } , Cµ := ∑
σ∈Cµ

σ . (6.15)

The element Cµ ∈ C[Sd] collects in a single term all permutations of cycle type µ, and is called
the conjugacy class element of type µ.

Exercise 6.2. Compute x + y and x · y in the group algebra C[S3], where x = 3(1 2) + 5(1 2 3) and
y = 4(1 3)− 6(1 2 3). Compute Cµ for µ = (2, 1).

With this language, it is now easy to describe the above counting.

Theorem 6.8 (Hurwitz numbers by counting permutations). The following equation holds:

H•
g d→0

(µ1, . . . , µm) =
1
d!

[id]Cµ1 · · ·Cµm , (6.16)

where [id] : C[Sd] → C is the operator extracting the coefficient of the identity in the expansion of the
product Cµ1 · · ·Cµm .

As the next example and exercise show, the above formula is extremely easy to implement: it
reduces the counting of Hurwitz covers to a simple expansion of monomials and product in the
symmetric group. The formula can even be implemented on a computer!

Example 6.9. Consider in C[S2]

[id]C2
(2) = [id](1 2)2 = 1 . (6.17)

The computation gives H•
0 2→0

(
(2), (2)

)
= 1

2 , which geometrically is the cover

P1 P1

[z0 : z1] [z2
0 : z2

1]

f

(6.18)

from example 2.12 (with the non-trivial automorphism [z0 : z1] 7→ [−z0 : z1]).

A similar example, again in C[S2], is

[id]C4
(2) = [id](1 2)4 = 1 . (6.19)

This gives H•
1 2→0

(
(2), (2), (2), (2)

)
= 1

2 , which geometrically is the projectivisation of the cover

E P1

[z0 : z1 : z2] [z0 : z2]

f

(6.20)

for E = Z(z2
1z2 − (z0 − α1z2)(z0 − α2z2)(z0 − α3z2)) the elliptic curve of example 2.13 (with the

non-trivial automorphism [z0 : z1 : z2] 7→ [z0 : −z1 : z2]).

Exercise 6.3. Compute H•
0 3→0

(
(3), (3)

)
by counting permutation. Can you generalise the computation to

H•
0 d→0

(
(d), (d)

)
? And can you motivate why H•

0 d→0

(
(d), (d)

)
= H

0 d→0

(
(d), (d)

)
in this case?
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Exercise 6.4. Show that H•
0 4→0

(
(3, 1), (2, 2), (2, 2)

)
= 0 by counting permutation.

The previous exercise demonstrates that, even if the discrete data satisfies the Riemann–Hurwitz
formula, it is still possible that no Hurwitz covers exist for that data. Remarkably, determining
the necessary and sufficient conditions for a Hurwitz number to be non-zero remains an open
problem, known as the Hurwitz existence problem.

Remark 6.10. Theorem 6.8 can be generalised to a target Riemann surface Y of arbitrary genus h
as follows. First, the fundamental group of Y× = Y \ { y1, . . . , ym } admits the presentation

π1(Y×, y0) ∼= ⟨α1, β1, . . . , αh, βh, γ1, . . . , γm | [α1, β1] · · · [αh, βh]γ1 · · · γm⟩ , (6.21)

where αj, β j are the loops defined by the sides of the fundamental polygon of Y and γi is a small
loop around yi. The relation can be easily seen from the fundamental polygon. Secondly, the
relation can be encoded in the following element of the group algebra:

K := d! ∑
µ⊢d

1
|Cµ|

C2
µ ∈ C[Sd] , (6.22)

so that the Hurwitz number is computed as

H•
g d→h

(µ1, . . . , µm) =
1
d!

[id]KhCµ1 · · ·Cµm . (6.23)

Bonus paragraph

(not required for
the exam)

For the reader familiar with the representation theory of the symmetric group, we conclude
with one more formula for Hurwitz numbers known as Burnside formula. First, notice that the
conjugacy class elements belong to a subalgebra of C[Sd]: its centre

ZC[Sd] := { x ∈ C[Sd] | xy = yx for all y ∈ C[Sd] } . (6.24)

Thus, all computations regarding Hurwitz numbers can performed on the (much nicer) subal-
gebra ZC[Sd] of C[Sd]. Secondly, recall13 that the irreducible representations and the conjugacy
classes of element in the symmetric group Sd and the are in one-to-one correspondence with
partitions of d. In particular, it makes sense to consider the character χλ(µ), that is the trace of
any element of conjugacy type µ in the irreducible representation labelled by λ. We also denote
by dim(λ) the dimension of the irreducible representation labelled by λ. The link between the
centre of the group algebra of Sd and its irreducible characters is provided by Maschke’s theorem.

Lemma 6.11 (Maschke’s theorem). The conjugacy class elements form a basis of ZC[Sd] as a complex
vector space:

ZC[Sd] ∼=
⊕
µ⊢d

CCµ . (6.25)

13Here is a crash course on representation theory. Let G be a group; a (complex) representation of G is the data of
a finite-dimensional complex vector space V together with a group homomorphism ρ : G → GL(V). A representation
is is called irreducible if it contains no non-trivial subspaces that are invariant under the group action. The character
of a representation ρ is the map χρ : G → C, g 7→ tr(ρ(g)). Notice that the character only depends on the conjugacy
class of an element g. If the irreducible representations of G are indexed as { (Vλ, ρλ) }λ and the conjugacy classes are
indexed as { Cµ }µ

, we denote by χλ(µ) the character of any element in Cµ for the representation (Vλ, ρλ).
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Further, as an algebra, it is semisimple. This means that there exists a basis (eλ)λ⊢d, called the idempotent
basis, such that eλ · eλ′ = δλ,λ′ eλ. The change of basis (Cµ)µ⊢d ↔ (eλ)λ⊢d is explicitly given as

Cµ = |Cµ|∑
λ⊢d

χλ(µ)

dim(λ)
eλ , eλ =

dim(λ)

d! ∑
µ⊢d

χλ(µ)Cµ . (6.26)

Thanks to Maschke’s theorem, we can easily deduce Burnside’s formula, expressing Hurwitz
numbers in terms of characters of the symmetric group.

Theorem 6.12 (Burnside character formula). The following equation holds:

H•
g d→0

(µ1, . . . , µm) = ∑
λ⊢d

(
dim(λ)

d!

)2 m

∏
i=1
|Cµi |

χλ(µi)

dim(λ)
. (6.27)

Proof. Start from equation (6.16), expressing Hurwitz numbers in terms of conjugacy class ele-
ments, and let us perform the change of basis writing the Cµi ’s in the idempotent basis. Since the
basis is idempotent, the product simplifies considerably:

H•
g d→0

(µ1, . . . , µm) =
1
d!

[id]Cµ1 · · ·Cµm

=
1
d!

[id] ∑
λ1,...,λm⊢d

(
m

∏
i=1
|Cµi |

χλi(µi)

dim(λi)

)
eλ1 · · · eλm

=
1
d!

[id] ∑
λ⊢d

(
m

∏
i=1
|Cµi |

χλ(µi)

dim(λ)

)
eλ .

(6.28)

On the other hand, Maschke’s theorem gives an explicit description of the coefficient of the
identity in eλ:

eλ =
dim(λ)2

d!
id + · · · , (6.29)

where the dots stand for elements not proportional to the identity. The equation is due to the
fact that dim(λ) = χλ((1, . . . , 1)), C(1,...,1) = id, and the identity does not appear in any other
conjugacy class element. As a consequence, we find

H•
g d→0

(µ1, . . . , µm) =
1
d!

[id] ∑
λ⊢d

(
m

∏
i=1
|Cµi |

χλ(µi)

dim(λ)

)(
dim(λ)2

d!
id + · · ·

)

= ∑
λ⊢d

(
dim(λ)

d!

)2 m

∏
i=1
|Cµi |

χλ(µi)

dim(λ)
.

(6.30)

This concludes the proof. □

Remark 6.13. Burnside’s formula also generalises to targets of arbitrary genus h as

H•
g d→h

(µ1, . . . , µm) = ∑
λ⊢d

(
dim(λ)

d!

)2−2h m

∏
i=1
|Cµi |

χλ(µi)

dim(λ)
. (6.31)

Although perhaps ‘less practical’ compared to the expression in terms of permutations, Burn-
side’s formula is a formidable tool. It links Hurwitz numbers to the elegant representation theory
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of the symmetric group. Surprisingly, this theory is closely related to that of soliton waves and to
the topological string theory of 1-dimensional space-times. Burnside’s formula is a crucial step
in establishing these connections.
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7. What next?

Bonus chapter

(not required for
the exam)

7.1. Algebraic geometry. One of the main consequences of Riemann–Roch is that all compact
Riemann surfaces are algebraic. It turns out that many of the desirable properties of compact
Riemann surfaces are preserved when dealing with projective varieties, which are subsets of some
projective space defined as the zero-locus of a finite collection of homogeneous polynomials.

There are several advantages to this point of view. Firstly, most of the theory works seamlessly
when considering polynomial equations over an arbitrary algebraically closed field k. Secondly,
the theory naturally accommodates potentially singular objects. For example, the affine curve
defined by the equation xy = 0 is singular (it is the union of two crossing lines), but the sin-
gularity is mild enough (being defined by a simple polynomial equation) to not pose significant
problems. Thirdly, one can use powerful tools from commutative algebra rather than analysis to
prove the desired results.

Here is a list of concepts and results introduced in this course that naturally generalise to an
arbitrary n-dimensional projective variety X (or schemes, stack, or further generalisations).

• The ring of holomorphic functions is generalised by that of regular functions on X, which is
better described as a sheaf OX of rings on X. For a variety X over a field k we have OX(X) = k,
which generalises Liouville’s theorem for compact Riemann surfaces.
• The field of meromorphic functions is generalised by the so-called function field of X, usually

denoted k(X). Elements of k(X) are locally ratios of regular functions, in the same way that
meromorphic functions are locally ratios of holomorphic functions.
• The concept of a divisor generalises to that of Weil divisors, which are formal sums of codi-

mension 1 subvarieties. The concepts of principal divisors and the Picard group also extend
without too many modifications (although the correct terminology in this context would be
the Weil divisor class group).
• The spaces of meromorphic functions and forms, L(D) and I(D), generalise considerably within

the framework of sheaf theory. They are instances of the 0-th and 1-st cohomology groups
of the sheaf O(D) associated with the divisor D. Sheaf theory generalises most of the results
we proved for the spaces of meromorphic functions and meromorphic forms, with some
complications arising from the higher dimension of the variety. These include:

– Finiteness theorem. For a coherent sheaf F , the cohomology groups Hp(X,F ) are finite-
dimensional vector spaces which are trivial for all p > dim X.

– Serre duality. For smooth X, there exists a sheaf, called the canonical sheaf ωX and
constructed through differential forms on X, such that for any coherent sheaf F the
following duality holds:

Hp(X,F ) ∼= Hn−p(X,F ∗ ⊗ωX)
∗ . (7.1)

Albeit not, strictly speaking, a generalisation of Poincaré duality from differential topol-
ogy, Serre duality serves a similar role in algebraic geometry.
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– Riemann–Roch formula. As mentioned before, Riemann–Roch generalises to a relative
statement due to Grothendieck regarding a proper map f : X → Y between smooth
projective varieties. It relates the pushforward map in K-theory

f! :=
n

∑
p=0

(−1)p Rp f∗ : K0(X) −→ K0(Y) , (7.2)

which can be thought of as a generalisation of the Euler characteristic, to the pushforward
map in cohomology

f∗ : H(X) −→ H(Y) (7.3)

by the formula

ch( f!F ) = f∗
(
ch(F )td(Tf )

)
. (7.4)

Here ch : K0(X) → H(X) is the Chern character, td(Tf ) is the Todd genus of the relative
tangent sheaf of f , and F is an arbitrary bounded complex of coherent sheaves. If X
is a Riemann surface, Y = { ∗ } is a point, and F = O(D) for a divisor D, the formula
reduces to Riemann–Roch as

ch( f!F ) = ℓ(D)− ℓ(K− D) , f∗
(
ch(F )td(Tf )

)
= deg(D) + 1− g . (7.5)

• There are various generalisations of the Abel–Jacobi theory, although not as rich as in the curve
case. One example is the intermediate Jacobians:

Jk+1(X) := H2k+1(X, R)/H2k+1(X, Z) , k = 0, . . . , n− 1 , (7.6)

which reduces to the ordinary Jacobian for dim(X) = 1 and k = 0. Other generalisations
include the Picard variety and the Albanese variety. An interesting concept that generalises
well is that of Riemann bilinear relations, which can be formalised in the theory of Hodge
structures.

Other key concepts relevant to Riemann surfaces, however, do not generalise to higher dimen-
sions. This is the case for most ‘topological’ notions and statements such as the Riemann–
Hurwitz formula and Hurwitz theory. The main reason behind this difference is that compact
orientable topological surfaces are uniquely characterised by their genus. In higher dimensions,
this is not the case, making all related concepts much more challenging. For instance, one can
define the geometric genus pg and the arithmetic genus pa of a projective variety as

pg := dim H0(X, ωX) and pa := (−1)n(χ(OX)− 1
)

. (7.7)

For a smooth variety. X, one finds pg = pa, and they both coincide with the topological genus if
X is a Riemann surface (since H0(X, ωX) = Ω(X) and χ(OX) = 1− g). Albeit more complicated,
the classification of varieties based on invariants such as the geometric and arithmetic genus is
an important field of algebraic geometry known as birational geometry.
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7.2. Moduli spaces, string theory, and all that. A different direction that, in a sense, remains
within the realm of Riemann surfaces is the study of their moduli spaces, which aims at under-
standing the various ways we can regard a genus g topological surface as a Riemann surface. One
of the consequences of Riemann–Roch is that for g = 0 there is a unique way to endow a sphere
with a complex structure (this is why it is sensible to refer to the Riemann sphere). However, for
g > 0, there are infinitely many distinct complex structures. Thus, it is meaningful to consider a
space parametrising all genus g Riemann surfaces: a moduli space.

A moduli space M is, first and foremost, a topological space. What distinguishes a moduli
space from merely a topological space is that the underlying set of points corresponds bijectively
with certain interesting geometric objects. More precisely, each point of M corresponds to an
isomorphism class of some object we wish to study, and the intuitive idea is that two points inM
are ‘close’ to each other if the corresponding isomorphism classes of geometric objects are ‘close’
to each other. A classical example is the projective space Pn parametrising lines in Cn+1. Each
point of Pn corresponds to a line, and moving continuously from one point to a nearby point
amounts to continuously adjusting the corresponding lines.

Similarly, we have the moduli space Mg, whose points correspond to isomorphism classes of
genus g Riemann surfaces. In other words, two Riemann surfaces X and X′ represent the same
point in Mg if they are isomorphic. The topology on Mg is difficult to describe formally, but
it satisfies some intuitive properties. For instance, if X = Z(F) for a certain homogeneous
polynomial F, then slightly altering the coefficients of F will result in a new Riemann surface X′

that we perceive as close to X insideMg. The example of genus 1 surfaces was illustrated by the
so-called modular curve, where closely related lattices correspond to closely related tori.

{
genus 1

Riemann surfaces

}
⧸∼ ∼= H⧸SL(2, Z) =

0 1−1 1
2− 1

2

BB′
A

CC′

(7.8)

Understanding the geometry of the moduli spaceMg is equivalent to understanding all possible
complex structures that can be imposed on a genus g surface. Hurwitz theory emerged as a
method to address some of these questions. For example, it can be shown using Hurwitz theory
that Mg is connected. Geometrically, this means that any complex structure can be continu-
ously deformed into any other. Another interesting application of Hurwitz theory provides the
dimension ofMg: for g ≥ 2,

dimMg = 3g− 3 . (7.9)
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This result was already known to Riemann himself, who also coined the term ‘moduli space’
(from the Latin word modus, meaning measure):

Riemann’s argument combines (what are now called) the Riemann–Roch and Riemann–Hurwitz
formulae. He starts by considering the moduli space of pairs (X, f ), where X is a genus g
Riemann surface and f is a degree d holomorphic map from X to P1 (i.e. a meromorphic function
on X). Such a space is sometimes referred to as the Hurwitz space, denoted Hg,d. Riemann
computes its dimension in two different ways.

Method 1. On the one hand, the dimension of Hg,d is simply the dimension ofMg, counting the
‘number of deformation parameters’ of the Riemann surface X, plus the ‘number of deformation
parameters’ of the function f . A generic f has d simple poles that can be fixed at x1, . . . , xd,
providing d degrees of freedom. Once the poles have been fixed, the number of degree d functions
f : X → P1 with simple poles at x1, . . . , xd is computed by Riemann–Roch: for D = x1 + · · ·+ xd

we have ℓ(D) = d + 1− g, assuming d is large enough so that ℓ(K−D) = 0. To sum up, we find

dimHg,d = dimMg︸ ︷︷ ︸
moving X

+ d︸︷︷︸
fixing

d poles

+ d + 1− g︸ ︷︷ ︸
moving f

with fixed poles

= dimMg + 2d + 1− g . (7.10)

Method 2. On the other hand, a generic degree d holomorphic map f : X → P1 has only simple
ramification points that can be arbitrary, so dimHg,d = #Ram f . This number is provided by
Riemann–Hurwitz: if f has only simple ramification points,

2g− 2 = −2d + #Ram f , (7.11)

so that dimHg,d = 2d + 2g− 2.

The two computations imply the claimed formula: dimMg = 3g− 3. The argument can be made
rigorous by saying that the map

p : Hg,d −→Mg , (X, f ) 7−→ X (7.12)
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which ‘forgets’ the function f is (the algebraic-geometric equivalent of) a fibration, so that by the
fibre-dimension theorem

dimHg,d = dimMg + dim F (7.13)

for F a generic fibre of p. Riemann’s argument described above is essentially the computation of
dim F = 2d + 1− g using Riemann–Roch and dimHg,d = 2d + 2g− 2 using Riemann–Hurwitz.

It is also worth mentioning an exciting application of Hurwitz numbers in relation to the mod-
uli space of Riemann surfaces: the ELSV formula, named for its discoverers Ekedhal, Lando,
Shapiro, and Vainshtein. The ELSV formula expresses certain integrals over the moduli space
of Riemann surfaces in terms of Hurwitz numbers. The integrals involved are fundamentally
important but relatively intractable, while we have seen that Hurwitz numbers are combina-
torial and computable. This connection is a key step, in conjunction with Burnside’s formula,
in Okounkov and Pandharipande’s solution of the topological string theory of one-dimensional
space-times.

sp
ac

e

time

Figure 28. A worldsheet in
space-time.

At this point, one can ask: why would physics have
anything to do with Riemann surface? It turns out
that physics, and in particular string theory, does indeed
have much to say Riemann surfaces and their moduli
space. String theory is a branch of theoretical physics
where elementary particles are replaced by strings. As
a string travels through space-time it traces out a Rie-
mann surface, that is the worldsheet of the string (see
figure 28). These are a stringy versions of Feynman di-
agrams. The path integrals of the theory are mathemat-
ically described as integrals over the moduli spaces of
Riemann surfaces mapping to the space-time.

One of the most useful tools at the disposal of physicists is physical dualities. Roughly speaking,
physicists aim to construct mathematical models that explain the universe, but occasionally, mul-
tiple mathematical models yield the same observable quantities. When this occurs, both models
are considered valid physical descriptions from a physics standpoint. We say that these models
are dual. However, dualities have an unexpected consequence. Dual physical models may be
constructed using completely different mathematical structures. For instance, a given physical
model may be formulated in the language of algebraic geometry, while a dual model may involve
objects from number theory. Consequently, the physical duality implies a connection between
certain objects defined in seemingly unrelated areas of mathematics!
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