Exercise 1. For each of the following cones:

- (1) Write the generators and compute the dimension.
- (2) Compute the dual cone.
- (3) List all the faces of σ , expressed as $\sigma \cap u^{\perp}$ for some u in the dual ambient vector space. Do the same for $\check{\sigma}$.
- (4) Verify the orientation-reversing bijection $\tau \leftrightarrow \tau^*$, and the dimension formula $\dim(\tau) + \dim(\tau^*) = n$, where *n* is the dimension of the ambient space.

Bonus: Try the following case in \mathbb{R}^3 , where the cone is generated by e_1 , $-e_1$, $e_2 + e_3$, and $-e_2 + e_3$.

Exercise 2. Compute the generators of the monoid $\sigma \cap \mathbb{Z}^2$, where σ is the green cone above.

Exercise 3. Let $\sigma \subset \mathbb{R}^n$ be a cone, and let $M \subset \mathbb{R}^n$ be a lattice. Gordon's lemma states that if σ is a rational cone, then the monoid $\sigma \cap M$ is finitely generated. Can you provide an example of a non-rational cone for which $\sigma \cap M$ is not finitely generated?

Exercise 4. Let $\sigma = \{0\}$ be the trivial cone in $\mathbb{Z}^n \subset \mathbb{R}^n$. Compute the associated monoid S_{σ} , the associated algebra R_{σ} , and determine the corresponding variety.