Exercise 1. Consider the cone σ in \mathbb{R}^2 generated by e_1 and $3e_1 - 2e_2$. Describe $\check{\sigma}$, find generators of $S_{\sigma} = \check{\sigma} \cap \mathbb{Z}^2$, compute the toric ideal of the affine variety X_{σ} , and describe the torus in X_{σ} .

Exercise 2. Consider the cone σ in \mathbb{R}^3 generated by e_1 , e_2 and $e_1 + e_2 + 2e_3$. Describe $\check{\sigma}$, find generators of $S_{\sigma} = \check{\sigma} \cap \mathbb{Z}^3$, and compute the toric ideal of the affine variety X_{σ} , and describe the torus in X_{σ} .

Exercise 3. Let $\sigma \subset \mathbb{R}^n$ be a cone. Prove that the following are equivalent.

- σ is strongly convex.
- $\{0\}$ is a face of σ .
- σ contains no positive-dimensional subspace of \mathbb{R}^n .
- $\sigma \cap (-\sigma) = \{0\}$
- dim $\check{\sigma} = n$.