Exercise 1. *Prove that* $Cl(\mathbb{P}^n) \cong Pic(\mathbb{P}^n) \cong \mathbb{Z}$.

Exercise 2. Let P be a polytope with $0 \in int(P)$ with associated fan Δ_P . Show that

$$\psi_P \colon |\Delta_P| \longrightarrow \mathbb{R}, \qquad \psi_P(v) \coloneqq \min_{u \in P} \langle u, v \rangle,$$
(1)

is a support function and that $[\psi_P] \neq 0$ in $\operatorname{Pic}(X_P)$. Use this to conclude that the fan obtained from the standard cube in \mathbb{R}^3 by replacing (1,1,1) with (1,2,3) is non-polytopal.

Exercise 3. Let $X = \mathbb{P}^2$. Compute $H^p(X, \mathcal{O}_X)$ from the definition of sheaf cohomology, taking the affine cover of defined by the fan of \mathbb{P}^2 as an open cover.

Exercise 4 (**P**). Let $X = \mathbb{P}^n$. For any $d \in \mathbb{Z}$, consider $D := dD_0$, where D_0 is the closure of the orbit associated with the ray generated by $e_0 = -(e_1 + \cdots + e_n)$.

- Prove that the support function ψ_D evaluates to zero on e_1, \ldots, e_n and to m on e_0 . Deduce that ψ_D is zero on the cone generated by e_1, \ldots, e_n , and is $m \langle e_i^*, \cdot \rangle$ on the cone generated by $e_0, \cdots, \hat{e_i}, \cdots, e_n$.
- For $(u_1, \ldots, u_n) \in \mathbb{Z}^n$, prove that χ^u is the rational function

$$\chi^{u} \colon [z_0, z_1, \cdots, z_n] \longmapsto \frac{z_1^{u_1} \cdots z_n^{u_n}}{z_0^{u_1 + \cdots + u_n}}.$$
(2)

• For $d \ge 0$, verify that ψ_D is convex. Verify that

$$P_D = \left\{ \left. (u_1, \dots, u_n) \in \mathbb{Z}^n \; \middle| \; u_i \ge 0 \text{ and } \sum_i u_i \le d \right\}.$$
(3)

Deduce that

$$H^{p}(\mathbb{P}^{n}, \mathcal{O}(d)) = \begin{cases} \mathbb{C}[z_{1}, \dots, z_{n}]_{d} & \text{if } p = 0, \\ 0 & \text{else.} \end{cases}$$
(4)

Here $\mathbb{C}[z_1, \cdots, z_n]_d$ *denotes the space of polynomials of degree at most d.*

• For d < 0 verify that ψ_D is concave, so that $H^p_{Z(u)}(|\Delta|) = 0$ unless Z(u) = 0. Deduce that

$$H^{p}(\mathbb{P}^{n}, \mathcal{O}(d)) = \begin{cases} (z_{1}^{-1} \cdots z_{n}^{-1} \mathbb{C}[z_{1}^{-1}, \dots, z_{n}^{-1}])_{d} & \text{if } p = n, \\ 0 & \text{else.} \end{cases}$$
(5)