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This is a collection of notes based on [2, 6].

1. Motivation & history

In symplectic topology and algebraic geometry, Gromov-Witten (GW) invariants are rational numbers
that count pseudo-holomorphic curves meeting prescribed conditions in a given symplectic manifold,
or algebraic curves meeting prescribed conditions in a given algebraic variety. They also play a crucial
role in closed type IIA string theory.

The invariants were first introduced by Gromov in [3] in the symplectic context. A striking application
of it was the proof of the non-squeezing theorem: it is not possible to embed a ball into a cylinder via
a symplectic map, unless the radius of the ball is less than or equal to the radius of the cylinder. This
highlights how symplectic transformations are more restrictive than volume-preserving ones. Succes-
sively, the invariants were studied by Witten [7] in a string theory context, where the free energy of
the theory corresponds to the GW invariants generating function. In the aforementioned paper, Witten
conjectured some relations between such invariants, and in some sense built bridges to enumerative
algebraic geometry.

In the following, we will adopt this last point of view, started with Kontsevich in [4]. Let us start with
the most natural enumerative problem.

How many straight lines pass between two distinct points in the plane?

The answer is intuitively easy: only one. This is nothing but Euclid’s 1st axiom. The second natural
step is the following.

How many conics pass through five generic points in the plane?

The fact that this is one is a classically known fact (Apollonius, 50 AD). How can you show this? We
can construct the solution explicitly. Given five points (ai,bi), the polynomial is constructed as the
determinant

p(x,y) =

∣∣∣∣∣∣∣∣∣
1 x y x2 xy y2

1 a1 b1 a2
1 a1b1 b2

1
...

1 a5 b5 a2
5 a5b5 b2

5

∣∣∣∣∣∣∣∣∣ .
The natural generalization of these questions is the following.

How many rational nodal curves of degree d pass through 3d− 1 generic points in the projective plane?

Call Nd such number. After the discoveries N1 = N2 = 1 of the antiques, it took quite some time to
prove that the number of nodal cubics passing through 8 general points in the plane is N3 = 12. This
was done by Steiner in 1848. The next step was done by Chasles, de Jonquières and Zeuthen around
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1870, that is N4 = 620. Immediately after, Schubert computed N5 = 87304. The final answer, known as
Kontsevich formula, solved in 1993 the problem at once:

Nd =
∑

dA,dB>0
dA+dB=d

(
d2
Ad

2
B

(
3d− 4

3dA − 2

)
− d3

AdB

(
3d− 4

3dA − 1

))
NdANdB

The aim of these notes is to give a proof of Kontsevich formula through Gromov-Witten theory.

A small remark: why do we need exactly 3d − 1 conditions for a degree d curve rational curve in the
plane? A quick explanation goes as follows. The space of degree d curves in P2 consists of degree d
polynomials in two variables, up to constants. This space has dimension

(
d+2

2

)
− 1. Further, a generic

curve in such family will be smooth of genus g = (d−1)(d−2)
2 . In order to have a nodal, rational curve,

we have to impose (d−1)(d−2)
2 conditions (one for each node). Thus, the space of nodal, rational curves

in the plane will have dimension(
d+ 2

2

)
− 1 −

(d− 1)(d− 2)
2

= 3d− 1.

2. Moduli space of stable maps and Gromov-Witten invariants

We see that a natural question is counting curves of a fixed degree and a prescribed genus into P2. Let
us make it more general: consider a smooth projective variety X. For technical reasons, let us suppose
that X has even cohomology only. The degree can be substituted with an element β ∈ H2(X,Z), and we
will try to count curves by parameterising them.

DEFINITION 2.1 ((Pre-)stable curves). A pre-stable curve of type (g,n) is the data (C,p1, . . . ,pn) of
• a (possibly nodal) curve of arithmetic genus g (i.e. χ(OC) = 1 − g),
• smooth distinct marked points p1, . . . ,pn.

The curve is called stable if it has finitely many automorphisms.

DEFINITION 2.2 (Stable maps). Let X be a smooth projective variety. A stable map of type (g,n) is the
data (C,p1, . . . ,pn, f) of

• a pre-stable curve (C,p1, . . . ,pn) of type (g,n),
• a map f : C→ Xwith finitely many automorphisms.

A morphism between f : (C,p1, . . . ,pn)→ X and g : (C ′,p ′1, . . . ,p ′n)→ X is a morphism between marked
curves ϕ : (C,p1, . . . ,pn)→ (C ′,p ′1, . . . ,p ′n) such that f = g ◦ϕ.

The stability condition for a map, that is the condition of admitting finitely many automorphisms, is
equivalent to requiring that, for any irreducible component C0 of C contracted to a point by f, one has

2g(C0) − 2 + n(C0) > 0,

where n(C0) is the number of special points (marked points or nodes) on C0.

We want to define the moduli space of stable maps. We can refine this space by the discrete data of a
homology class β ∈ H2(X,Z).

DEFINITION 2.3 (Moduli space of stable maps). Define the moduli space of stable maps of type (g,n) as

Mg,n(X,β) =
{
(C,p1, . . . ,pn, f)

∣∣∣ f is stable of type (g,n)
f∗[C] = β

}/
∼ .

EXAMPLE 2.4. Consider the case of a zero-dimensional target: X = { ∗ }. Then Mg,n(X,β) = Mg,n is the
moduli space of stable curves.
Another simple example is X = P2, β = 1 and type (0, 0).∗ This parameterizes maps P1 → P2 up to
reparameterisation of the map. That is, this is nothing but the collection of lines in P2, or Gr(2, 3). More
generally,

M0,0(Pr, 1) = Gr(2, r+ 1).
This is obviously smooth, compact, and irreducible. It is the best of all worlds.

∗We will use the convention that, if H2(X,Z) ∼= Z, then we use an integer to represent the homology class which is that
multiple of a generator. In the case of Pr,H2(Pr,Z) = Z.HwhereH is the class of a hyperplane.
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Things rapidly degenerate from here, however. Let us consider the next simplest case, that of plane
conics. Consider

M0,0(P2, 2).

This should be the space of conics in P2, but it is not. This moduli space is built up as follows.

• There is a locus of maps whose sources are smooth. This is denoted by M0,0(P2, 2).
◦ Generically, the image of such a map will be a smooth conic, which will be an open locus

in the space of all conics, which itself is isomorphic to P5.
◦ There is a sublocus consisting of those maps that are 2 : 1 covers of a line in P2. This is a

4-dimensional locus, since we need two parameters to describe the target line, and two
to describe the ramification points of the map. Each map in this locus also has Z2 as an
automorphism group, coming from the exchange of the covering sheets.

• Consider the “boundary” M0,0(P2, 2) \M0,0(P2, 2).
◦ There are those curves whose domains consist of a nodal curve with two components,

each of which maps with degree 1 into P2. Within this, there is the locus of those maps
with image two distinct lines (which necessarily join at one point). This is a four dimen-
sional space, two for each line in P2.

◦ Deeper into the boundary, there is the locus of those curves with nodal sources, but whose
image are both the same line. This is three dimensional; two for the line, and one for the
point on that line where the two components meet. Furthermore, every map in this locus
also has Z2 as automorphism group, since there is an automorphism of the source curve
which exchanges the two components.

We have to remark that, as a moduli space, Mg,n(X,β) has much more structure than that of a set.
By definition, a moduli space should be equipped with a geometry that encodes how objects can de-
form. This can be done, so that Mg,n(X,β) has the structure of a Deligne-Mumford stack (the algebro-
geometric version of a complex orbifold).

Notice from the previous example that Mg,n(X,β) does not necessarily have a well-defined dimension.
However, it does have an “expected” or “virtual” dimension, calculated by studying the space of infini-
tesimal deformations of a stable map (the tangent space to the moduli space) as well as the obstructions
to extending infinitesimal deformations to honest ones. Explicitly, the virtual (complex) dimension is

dg,n(X,β) = (dimX− 3)(1 − g) +

ˆ
β

c1(TX) + n,

where c1(TX) is the first Chern class of the holomorphic tangent bundle to X. Intuitively, one should
understand the virtual dimension by imagining that Mg,n(X,β) is the zero locus of a section s of a rank-
r vector bundle E→ B on some nonsingular ambient space B. If s does not intersect the zero section of
E transversally, then the dimension of the zero locus Z(s) could be larger than expected, but generically,
one expects its dimension to be dim(B) − r. This is the “virtual” dimension of Z(s).

Equipped with a replacement for the notion of dimension, it is a difficult fact [1] that there also exists a
replacement for the fundamental class, an element[

Mg,n(X,β)
]vir ∈ H2vdim(Mg,n(X,β))

known as the virtual fundamental class, which agrees with the fundamental class in the case where
Mg,n(X,β) is smooth of the expected dimension. Again, the idea can be explained intuitively by sup-
posing that Mg,n(X,β) is the zero locus of a section of a vector bundle, which may not meet the zero
section transversally. For example, consider the least transverse situation possible, when s is identically
zero. Then [Z(s)] = [B] lies in too-high dimension, but there is a natural way to achieve a homology class
in the virtual dimension: take [B] ∩ e(E), where e(E) is the Euler class of E. This amounts to perturbing
s ≡ 0 to a transverse section and then taking its zero locus.

As an example, consider the case of M0,n(P2,d). Since TP2 ∼= OP2(3), it follows thatˆ
dH

c1(TP2) = 3d.
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Thus, the virtual dimension of M0,n(P2,d) will be

dimP2 − 3 +

ˆ
dH

c1(TP2) + n = 3d− 1 + n.

Further, the formula for the virtual dimension explains why GW invariants are particularly interesting
in the case of Lastly Calabi-Yau threefolds. In such a case, we see that most of the terms in the dimension
formula vanish: dimX = 3 covers the first term, while c1(TX) = 0 covers the second. Thus, if X is a
Calabi-Yau threefold, then dg,0(X,β) = 0, and so we should generically expect finitely many curves of
any genus in one of these varieties.

With this technical remarks, we want to use the previously discussed Mg,n(X,β) to count holomorphic
curves in X. We first note that this space comes together with some evaluation maps to X. That is, there
are maps evi : Mg,n(X,β)→ X defined by

evi(C,p1, . . . ,pn, f) = f(pi).

We also have forgetful morphisms. Assuming the Mg,n(X,β) exists, these are given by the maps
πn : Mg,n+1(X,β)→Mg,n(X,β) where we set

πn(C,p1, . . . ,pn+1, f) = (C,p1, . . . ,pn, f)stab.

That is, we forget the (n + 1)-st marked point of the source curve, and we stabilize the resulting map,
i.e. we collapse any components of the curve that is unstable. We also have a forgetful morphism
π : Mg,n(X,β)→Mg,n

π(C,p1, . . . ,pn, f) = (C,p1, . . . ,pn)stab

which forgets the map (and the target space), provided again that the latter moduli space exists, that is
2g− 2 + n > 0.

We are now ready to give the definition of GW invariants. Consider γ1, . . . ,γn ∈ H•(X). We set

〈γ1 · · ·γn〉Xg,β =

ˆ
Mg,n(X,β)

n∏
i=1

ev∗i γi,

where
´
Mg,n(X,β) stands for

ˆ
Mg,n(X,β)

α =

{[
Mg,n(X,β)

]vir ∩ α if α ∈ H2vdim(Mg,n(X,β)),
0 otherwise.

In particular, 〈γ1 · · ·γn〉Xg,β = 0 unless
n∑
i=1

degγi = 2dg,n(X,β).

How should we interpret these numbers? Consider the case in which Mg,n(X,β) is a smooth, compact
orbifold with components all of the same dimension (the expected dimension, of course), and suppose
that each γi is the Poincaré dual of a subvariety Yi of X. The Poincaré dual of ev∗i γi represents the
collection of maps f : (C,p1, . . . ,pn) → X such that f(pi) ∈ Yi. Moreover, since the cup product is
Poincaré dual to intersection, we have that

∏
i ev∗i γi represents (in a suitably generic setting) those

maps f : (C,p1, . . . ,pn) → X such that f(pi) ∈ Yi for all 1 6 i 6 n. Since the location of the points on C
is arbitrary (i.e. varies over the moduli space), we can read this as follows.

The cohomology class
∏
i ev∗i γi represents the collection of morphisms f : (C,p1, . . . ,pn)→ X

such that the image f(C) intersects Yi for all 1 6 i 6 n.

If this is a finite number (which should generically occur if this class is a top class in H•(Mg,n(X,β))),
then by pairing it with the fundamental class we should get the number of such curves. That is, if we
consider the integral

〈γ1 · · ·γn〉Xg,β =

ˆ
Mg,n(X,β)

n∏
i=1

ev∗i γi,
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then this number can be interpreted as follows.

The GW invariant 〈γ1 · · ·γn〉Xg,β is the number of genus g curves in X

such that they have non-zero intersection with the subvarieties Y1, . . . ,Yn.

Now, we have assumed for the purposes of this discussion that the moduli space is smooth, compact,
and finite-dimensional. Unfortunately, this is not necessarily true. It is proper (compact), but it is often
not smooth, and it often has many different components of varying dimensions as we saw before. In
particular, it is not clear whether GW invariants have always the associated enumerative interpretation.
This is in general a hard problem, which require ad hoc techniques that will not be discussed here.
We just remark that for our main example, that is M0,3d−1(P2,d), the GW invariants coincide with the
enumerative interpretation. That is,

〈pt · · ·pt︸ ︷︷ ︸
3d−1

〉P2

0,d = Nd

is the number of nodal rational curves of degree d in the projective plane. In the next section we will
introduce one of the basic tools in GW theory, the GW potential and the WDVV equation. This will
allow us to compute all GW invariants of the plane, and thus prove Kontsevich formula. Before going
on with the GW potential, let us state some of the fundamental properties of GW invariants, that are
consequences of the properties of the virtual fundamental class.

FUNDAMENTAL CLASS AXIOM. We have the equality

〈γ1 · · ·γn−1 · 1〉Xg,β = 〈γ1 · · ·γn−1〉Xg,β

We can think of this as saying that imposing the constraint that a point on our curve be incident to X is
no condition at all. This has the further consequence that

〈γ1 · · ·γn−1 · 1〉Xg,β = 0

provided that (g,n,β) 6= (0, 3, 0). This is because the moduli spaces in question on the left- or right-
hand side have different dimension. It thus follows that if the forgetful map exists, then we must have
that the GW invariants are zero.

DIVISOR AXIOM. If [D] ∈ H2(X) is a divisor, then

〈γ1 · · ·γn−1 · [D]〉Xg,β =

(ˆ
β

[D]

)
〈γ1 · · ·γn−1〉Xg,β ,

provided that (g,n,β) 6= (0, 3, 0). In this case, this is morally due to the fact that the possible number of
points that a curve f(C) with f∗[C] = βmay intersect a divisor D is exactly

´
β[D].

POINT MAPPING AXIOM. The invariants with β = 0 satisfy

〈γ1 · · ·γn〉Xg,0 =

{´
X γ1 ∪ γ2 ∪ γ3 if (g,n) = (0, 3),

0 otherwise.

This follows from the fact that M0,3(X, 0) = X, since there is a unique isomorphism C ∼= P1 sending the
three marked points to 0, 1, and∞, so all that must be chosen to specify a point in M0,3(X, 0) is the image
point of the constant map f : C→ X. Furthermore, the virtual class actually is the ordinary fundamental
class in this case, so no deformation-theoretic argument is required.

3. Gromov-Witten potential

The key to working with GW invariants to their full potential is to do what one should always do
when confronted with an infinite collection of numbers depending on discrete data: arrange them into
a generating function. In order to do so, we need to fix some notation. As before, let X be a smooth
projective variety with even cohomology only, and let α0,α1, . . . ,αm be a basis (as a Q-vector space) of
H•(X) such that

• α0 = 1 ∈ H0(X),
• α1, . . . ,αr ∈ H2(X) be a basis of H2(X).
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DEFINITION 3.1 (Gromov-Witten potential). We define the genus g Gromov-Witten potential function of
X to be the formal series

ΦXg (t0, . . . , tm;q) =
∑

k0,...,km>0

∑
β∈H2(X,Z)

〈αk0
0 · · ·α

km
m 〉

X

g,β

(
m∏
i=0

tkii
ki!

)
qβ.

A small clarification: the symbol γk in the GW invariants stands for

〈· · ·γk · · ·〉Xg,β = 〈· · ·γ · · ·γ︸ ︷︷ ︸
k times

· · ·〉Xg,β.

Further, the qβ term might look a little odd, as β is a homology class. To make this precise, we can look
at it in the following way. Let β1, . . . ,βr be a basis of H2(X,Z). For convenience, it is sometimes nice to
choose it to be dual to the basis α1, . . . ,αr of H2(X) in the sense that

ˆ
βp

αq = δpq.

In this case, we can write any β =
∑r
i=1 diβi and, for a collection of formal variables q1, . . . ,qr, we set

qβ =

r∏
i=1

qdii .

As qβ can be manipulated similarly, that is qβ1+β2 = qβ1qβ2 , it does not really matter. Writing qβ is
more invariant (i.e. does not rely on a choice of basis), which is one reason that it may be preferred.

From a physics standpoint (and from a mirror symmetry standpoint) we should not really consider q
as a formal variable at all. We should instead consider it as a coordinate on the Kähler moduli space of
X, which we denote by KX. That is, if we consider the function

q : KX ×H2(X,Z)→ C, (ω,β) 7→ qβ = e2πi
´
βω,

then we interpret the GW potential as a function

ΦXg : KX → CJt0, . . . , tmK.

However, we must then contend with issues of convergence. To avoid these, one can consider it to be a
purely formal series QJt0, . . . , tm,q1, . . . ,qrK.

The first thing that we can do is to simplify it by using the divisor axiom. Let us focus, for fixed β 6= 0
and for 1 6 s 6 r, on the sum ∑

ks>0

〈αk0
0 · · ·α

ks
s · · ·αkmm 〉

X

g,β
tkss
ks!

.

Repeated use of the divisor axiom yields∑
ks>0

〈αk0
0 · · · α̂

ks
s · · ·αkmm 〉

X

g,β

(ˆ
β

αs

)
tkss
ks!

= 〈αk0
0 · · ·α

ks−1
s−1 · α

ks+1
s+1 · · ·α

km
m 〉

X

g,β e
ts
´
βαs .

Thus, we find that the GW potential with β 6= 0 is given by

∑
β∈H2(X,Z)

〈αk0
0 · α

kr+1
r+1 · · ·α

km
m 〉

X

g,β

tk0
0

k0!

(
r∏
s=1

ets
´
βαs

)(
m∏

i=r+1

tkii
ki!

)
qβ.

There is a further simplification due to the fundamental class axiom and the point mapping axiom. Let
us demonstrate it by computing the genus zero GW potential of P2. Let us fix the basis α0 = 1,α1 =

H,α2 = pt. We have

ΦP2

0 (t0, t1, t2;q) =
∑
k0,k1,k2

〈1k0 ·Hk1 · ptk2〉P
2

0,0
tk0

0

k0!
tk1

1

k1!
tk2

2

k2!
+
∑
k0,k2

∑
d∈Z×

〈1k0 · ptk2〉P
2

0,d
tk0

0

k0!

(
et1
´
dHH

) tk2
2

k2!
qd.
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Notice now few facts. We can simplify the second term by noticing that the sum is over d > 0, since
d < 0 cannot support the class of a curve. Further, et1

´
dHH = edt1 and from the fundamental class

axiom

〈1k0 · ptk2〉P
2

0,d =

{
Nd if k0 = 0, k2 = 3d− 1
0 otherwise.

Further, from the point mapping axiom, we have that the second term is different form zero, unless

k0 + k1 + k2 = 3 and 2k1 + 4k2 = 2d0,0(P2, 0) = 4. In this case, the invariant 〈1k0 ·Hk1 · ptk2〉P
2

0,0 will be
given by

k0 k1 k2 〈1k0 ·Hk1 · ptk2〉P
2

0,0

2 0 1
´
P2 pt = 1

1 2 0
´
P2 H

2 = 1

Thus, the genus zero GW potential of P2 will be

ΦP2

0 (t0, t1, t2;q) =
1
2
(
t2

0t2 + t0t
2
1
)
+

∞∑
d=1

Nde
dt1

t3d−1
2

(3d− 1)!
qd.

4. Quantum Product

Using the GW potential in genus zero, we define a deformation of the usual cup product on cohomol-
ogy. We will keep using the above conventions for the basis of H•(X).

DEFINITION 4.1 (Quantum products). Define gij =
´
X αi ∪ αj and let gij be the inverse matrix. Set

αi =
∑m
j=1 g

ijαj. Define the big quantum product to be ∗ : H•(X)Jt0, . . . , tm,qK⊗2 → H•(X)Jt0, . . . , tm,qK
as

αi ∗ αj =
m∑
k=0

∂3ΦX0 (t0, . . . , tm,q)
∂ti∂tj∂tk

ΦX0 (t0, . . . , tm;q)αk.

We define the small quantum product ∗ : H•(X)JqK⊗2 → H•(X)JqK by setting

αi ∗ αj =
m∑
k=0

∂3ΦX0 (t0, . . . , tm;q)
∂ti∂tj∂tk

∣∣∣∣
t0=···=tm=0

αk.

Define the small quantum cohomology ring as QH•(X) = (H•(X)JqK, ∗).

LEMMA 4.2. Setting q = 0 in the small quantum product, we get the standard intersection pairing.

PROOF. Firstly, notice that

ΦX0 (t0, . . . , tm; 0) =
∑

k0,...,km>0

〈αk0
0 · · ·α

km
m 〉

X

0,0

(
m∏
i=0

tkii
ki!

)
.

Then from the point mapping axiom, we see that

ΦX0 (t0, . . . , tm; 0) =
∑

ka+kb+kc=3

ˆ
X

αkaa ∪ α
kb
b ∪ α

kc
c

tkaa
ka!

tkbb
kb!

tkcc
kc!

and as a consequence

∂3ΦX0 (t0, . . . , tm;q)
∂ti∂tj∂tk

∣∣∣∣
t0=···=tm=q=0

=

ˆ
X

αi ∪ αj ∪ αk.

�

EXAMPLE 4.3. On P2 we have the following small quantum multiplication table. Note that α0 = α2 = 1,
α1 = α1 = H and α2 = α0 = pt. We see that

QH•(P2) ∼= Q[H]/(H3 −N1q)

whereas
H•(P2) ∼= Q[H]/H3.
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∗ 1 H pt

1 1 H pt
H H pt N1q

pt pt N1q N1qH

Notice that the big quantum product is clearly commutative. The Witten-Dijkgraaf-Verlinde-Verlinde
(WDVV) equations express the associativity of the product.

THEOREM 4.4 (WDVV equations). The genus zero GW potentialΦX0 satisfies the WDVV equations∑
a,b

Φijag
abΦbkl =

∑
a,b

Φjkag
abΦbil

IDEA OF PROOF. The idea the proof is similar to the standard proof of associativity of the product
defined by a 2d-TQFT. We want to consider an invariant associated to the four holed sphere, and then
use different decompositions into three holed spheres to actually calculate. This should be independent
of the decomposition into three holed spheres.
More precisely, recall that M0,4 ∼= P1 − { 0, 1,∞ } and M0,4 ∼= P1, where we have three boundary divisors,
denoted byD(12|34),D(13|24) andD(14|23), which using the identification above are 0 1 and∞. These
correspond to the nodal curves

1

2

3

4

1

3

2

4

1

4

2

3

Notice that we have a linear equivalence 0 ≡ 1 ≡ ∞ and therefore D(12|34) ≡ D(13|24) ≡ D(14|23).
Now consider the map Π : M0,n(X,β) → M0,4 defined by Π(C,p1, . . . ,pn, f) = (C,p1, . . . ,p4)

stab. Then
Π∗D(12|34) ≡ Π∗D(13|24) ≡ Π∗D(14|23).
To relate this to Gromov-Witten invariants we use the the fact that integrating over boundary divisors
can be written in terms of Gromov-Witten invariants higher Euler characteristic. That is, it can be shown
that Π∗D(ab|cd) ⊆M0,n(X,β) is a divisor that for some n = n1 + n2 and β = β1 + β2 decomposes as

D = M0,n1+1(X,β1)×XM0,n2+1(X,β2),

where the fibre product identifies the last marked point of each component. Interpreted in the right
way, this can be lifted to the level of virtual fundamental classes and we obtain

ˆ
D

ev∗1(α1) ∪ · · · ∪ ev∗n(αn) =
m∑
i=0

〈α1 · · ·αn1αi〉
X
0,β1
〈αiαn1+1 · · ·αn〉

X

0,β2
.

The linear equivalence gives the thesis. �

COROLLARY 4.5. The big quantum product ∗ onH•(X)Jt0, . . . , tm,qK is an associative and commutative
product.

5. Proof of Kontsevich formula

THEOREM 5.1 (Kontsevich formula). LetNd denote the number of degree d rational nodal curves passing
through 3d− 1 generic points in P2. Then Nd satisfies the recurrence relation

Nd =
∑

d1+d2=d

d2
1d2

(
d2

(
3d− 4
3d1 − 2

)
− d1

(
3d− 4
3d1 − 1

))
Nd1Nd2 ,

with initial condition N1 = 1.

PROOF. Denote simply ∂ijkΦP2

0 by Φijk. The WDVV equation for P2 is given by

Φij0Φ2kl +Φij1Φ1kl +Φij2Φ0kl = Φjk0Φ2il +Φjk1Φ1il +Φjk2Φ0il,

which for (i, j,k, l) = (1, 2, 2, 1) becomes

Φ120Φ221 +Φ121Φ121 +Φ122Φ021 = Φ220Φ211 +Φ221Φ111 +Φ222Φ011
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and reduces to
Φ222 = Φ2

112 −Φ111Φ122.

This gives

∞∑
d=1

Nde
dt1

t3d−4
2

(3d− 4)!
qd =

( ∞∑
d=1

d2Nde
dt1

t3d−2
2

(3d− 2)!
qd

)2

+

+

( ∞∑
d=1

d3Nde
dt1

t3d−1
2

(3d− 1)!
qd

)( ∞∑
d=1

dNde
dt1

t3d−3
2

(3d− 3)!
qd

)
.

Collecting the coefficient of qd, we find

Nde
dt1

t3d−4
2

(3d− 4)!
=

∑
d1+d2=d

d2
1Nd1e

d1t1
t3d1−2

2

(3d1 − 2)!
Nd2e

d2t1
t3d2−2

2

(3d2 − 2)!
+d3

1Nd1e
d1t1

t3d1−1
2

(3d1 − 1)!
d2Nd2e

d2t1
t3d2−3

2

(3d2 − 3)!

from which we conclude

Nd =
∑

d1+d2=d

d2
1Nd1Nd2

(3d− 4)!
(3d1 − 2)!(3d2 − 2)!

+ d3
1Nd1d2Nd2

(3d− 4)!
(3d1 − 1)!(3d2 − 3)!

=
∑

d1+d2=d

d2
1d2

(
d2

(
3d− 4
3d1 − 2

)
− d1

(
3d− 4
3d1 − 1

))
Nd1Nd2 .

�

6. Descendants

In the terminology of Witten, the GW invariants are correlation functions for some topological σ-model.
The idea of (gravitational) descendants is that they should correspond to coupling the topological σ-
model to gravity. Mathematically, this corresponds to the insertion of ψ-classes into GW invariants:

〈τa1γ1 · · · τanγn〉
X
g,β =

ˆ
Mg,n(X,β)

n∏
i=1

π∗ψaii ev∗i γi,

where ψi is the first Chern class of the line bundle Li → Mg,n, whose fiber over [C,p1, . . . ,pn] is T∗piC.
Such GW invariants can be computed in many examples using the following equations.

STING EQUATION:

〈τa1γ1 · · · τanγn · τ01〉Xg,β =

n∑
i=1

〈τa1γ1 · · · τai−1γi · · · τanγn〉Xg,β.

DILATON EQUATION:

〈τa1γ1 · · · τanγn · τ11〉Xg,β = (2g− 2 + n)〈τa1γ1 · · · τanγn〉Xg,β.

TOPOLOGICAL RECURSION RELATIONS:

〈τa1γ1 · · · τanγn · τk+1αa · τlαb · τmαc〉X0,β

=
∑

ItJ={ 1,...,n }
β1+β2=β

m∑
i=0

〈∏
i∈I
τaiγi · τkαa · τ0αi

〉X
0,β1

〈
τ0α

i ·
∏
j∈J
τajγj · τlαb · τmαc

〉X
0,β2

As before, αi is a basis of H•(X) and αi is the dual basis with respect to the Poincaré pairing.

We can now form the generating function for the descendant invariants. Set

t(z) =
∑
a>0

m∑
i=0

tiazaαi

and define

FX0 (t) =
∑
n>0

∑
β∈H2(X,Z)

1
n!
〈t(τ)n〉X0,β .
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For the X = { ∗ }, this is already a non-trivial generating function in infinitely many variables. It was
conjectured by Witten, and proved by Kontsevich, that such generating function satisfies an integrable
hierarchy, the KdV hierarchy.

THEOREM 6.1 (Kontsevich theorem [5], Witten conjecture [7]). The function

F∗(t0, t1, . . . ) =
∑

g>0,n>1
2g−2+n>0

∑
a1+···+an=3g−3+n

1
n!

ˆ
Mg,n

n∏
i=1

taiψ
ai
i

is a τ-function for the KdV hierarchy.

In particular the string equation is
∂F∗

∂t0
=

1
2
t2

0 +

∞∑
k=0

tk+1
∂F∗

∂tk

and it also satisfies the KdV equation

∂2F∗

∂t0∂t1
=

1
2

(
∂2F∗

∂t2
0

)2

+
1
12
∂4F∗

∂t4
0

.

Noting that F∗ = t3
0/6 + · · · along with these equations is enough to completely determine the gen-

erating function. There are some conjectures relating the more general generating series to integrable
hierarchies as well.
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