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1. Recap

Recall: the aim of the QFT and BV formalism learning seminar is to somehow give sense to the expecta-
tion values

(1.1) 〈f1, . . . , fm〉U =
1
ZU

ˆ
F

e−S(φ)f1(φ) · · · fm(φ)Dφ,

where ZU =
´
e−S(φ)Dφ is called the partition function factor, F is the space of fields with an inner

product 〈·, ·〉, and S is the (Euclidean) action depending on the fields φ:

(1.2) S(φ) =
1
2
〈φ,Kφ〉−  hU(φ).

Here K : F → F is a linear operator. Often, F are sections of a vector bundle E → X, where X is
interpreted as the space-time, and K is a linear differential operator acting on sections of E.

PROBLEM. How to properly define measure the above quantities?

EXAMPLE (0-dimensional case). In the well-defined 0-dimensional case, where we haveX = {p1, . . . ,pd },
F = C∞(X,R) = Rd, K = A is a symmetric, positive-definite matrix, U = 0 and fj(x) = xij , we found
(Wick’s theorem, Proposition (2.7) in [7])

(1.3) 〈xi1 , . . . , xim〉0 =
1
Z0
∂bi1
· · ·∂bim

Z(b)
∣∣∣
b=0

,

where we have set

(1.4) Z(b) =

ˆ
Rd

e−
1
2 〈x,Ax〉+〈b,x〉dx.

In physical jargon, b is called a source field. As a consequence, for U and fj polynomials, we are lead to
define the values

(1.5) ZU · 〈f1, . . . , fm〉U = e
 hU(∂b)f1(∂b) · · · fm(∂b)Z(b)

∣∣∣
b=0

and

(1.6) ZU = e
 hU(∂b) Z(b)

∣∣∣
b=0

as elements in R[[ h]]. After some manipulations, we found the following expression in terms of graph,
which makes sense also for potentials given by power series. More precisely, consider for a fixed po-
tential

(1.7) U(x) =
∑
k>3

Uj1···jkxj1 · · · xjk ,

where Uj1···jk is symmetric. Define G0
n to be the set of graphs with vertices of valence k > 3. Denote the

number of vertices of Γ ∈ G0 as |Γ |. A label of a graph G0 is the assignment of a label to every half-edge,
so that every vertex of valence k is identified by an unordered k-uple v = { j1, . . . , jk } and every vertex
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by an unordered couple e = { i, j }. So it makes sense to define Uv = Uj1···jk and A−1
e = A−1

ij . With this
notation, we found (Proposition (2.17) in [7])

(1.8) ZU = Z0

∑
Γ∈G0

 h|Γ |

|Aut Γ |

∑
labels

∏
v

Uv
∏
e

A−1
e ∈ R[[ h]].

Similarly, one can define for every m-uple (i1, . . . , im) the set of Gm of graphs with vertices of valence
k > 3, called internal vertices, and m vertices of valence 1, called legs and labeled by i1, . . . , im, such
that each connected component has at least one leg. Denote the number of internal vertices of Γ ∈ Gm

as |Γ |. A label of a graph Gm is the assignment of a label to every half-edge that is not a leg, so that
every vertex of valence k is identified by an unordered k-uple v = { j1, . . . , jk } and every vertex by an
unordered couple e = { i, j }. With this notation, we found (Proposition (2.18) in [7])

(1.9) 〈xi1 , . . . , xim〉U =
∑
Γ∈Gm

 h|Γ |

|Aut Γ |

∑
labels

∏
v

Uv
∏
e

A−1
e ∈ R[[ h]].

As a consequence, we can compute the expectation value of formal power series f1, . . . , fm by multi-
plying them and, thanks to linearity, compute the expectation values for monomial. Note the following
fact: the above relation makes sense for any symmetric, non-degenerate matrix A, even with values in
C. We can also make sense for a non-symmetric one, but in this case the edges should be oriented. The
only assumption to which we can not renounce is the non-degeneracy of A.

EXAMPLE (φ4-theory). Consider a pointed compact Riemannian manifold (X,g) and take F = C∞
0 (X),

that is the set of smooth functions vanishing at the marked point ∞, with the L2 scalar product, K = ∆

is the (geometric) Laplacian and U(φ) =
´
Xφ(x)

4dΩg. Then we have

S(φ) =
1
2
〈φ,∆φ〉−  hU(φ) =

ˆ
X

(
1
2
|dφ(x)|2 −  hφ(x)4︸ ︷︷ ︸
=L

(
φ(x),dφ(x)

)
)
dΩg.

Here K is symmetric, in the sense that 〈φ,Kψ〉 = 〈Kφ,ψ〉, and positive-definite, that is 〈φ,Kφ〉 = ‖dφ‖
is strictly positive for φ 6≡ 0. However, the path integral ZU still does not make sense.

EXAMPLE (Electromagnetic field). Let us consider the free theory, that is U ≡ 0. For a pointed compact
Riemannian manifold (X,g), we have F = Ω1

0(X), that is the space of differential forms vanishing at ∞,
and scalar product on 1-forms given by

〈ω,η〉 =
ˆ
X

ω∧ ∗η.

Define the free action taking K = dtd, that is

(1.10) Sfree(A) =
1
2
〈A,dtdA〉 =

ˆ
X

1
2
dA∧ ∗dA.

Here K is symmetric, in the sense that 〈A,KB〉 = 〈KA,B〉, but not positive-definite. More precisely, the
action is invariant under the transformationA→ A+dΛ for a scalar functionΛ ∈ C∞

0 (X). In particular,
the group G = C∞

0 (X) acts freely on F = Ω1
0(X) byΛ.A = A+dΛ and the action functional S is invariant

under such action.

PROBLEM. What should we do in case of symmetries? That is, how to handle the situation of an action
invariant under the action of a group? We will see how to solve this problem in section 3.

2. A QFT matrix model for enumeration of maps

Let us present the example of Hermitian matrix model as presented in [4] and the connection with
enumeration of maps, discovered by [1, 9]. This is a 0-dimensional QFT, where the matrix model on
one side and the Feynman diagrams on the other side can be used to obtain results for both perspectives.
More precisely, take Rd = HN as the set of Hermitian matrices, for d = N2, with normalized measure

(2.1) dM =
1

2N

(
N

π h

)N2
2
N∏
i=1

dMii

∏
i<j

dReMijdImMij.
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Further, let us consider the action S(M) = 1
2 trM2 − 1

4 trM4, so that the partition function will be

(2.2) Z =

ˆ
e−

N
 h S(M)dM.

The integral has to be intended as a formal power series, that is

(2.3) Z =

∞∑
k=0

1
m!

ˆ
HN

e−
N
2 h trM2

(
N

4 h
trM4

)m
dM.

We will see that Z is actually an element in Q
[
N,N−1

]
[[ h]]. Let us rewrite it in such a way that we can

apply Wick’s theorem:

(2.4) Z =

∞∑
m=0

1
4mm!

〈(
N
 h

trM4
)m〉

0
, 〈 f 〉0 =

ˆ
HN

e−
N
2 h trM2

f(M)dM.

Note that Z0 = 1 due to the normalization of dM. We can express the trace of M4 as a sum of products
of coordinates, that is trM4 =

∑
i,j,k,lMijMjkMklMli, so that by Wick’s theorem:

〈MijMjkMklMli〉0 = 〈MijMjkMklMli〉0 + 〈MijMjkMklMli〉0 + 〈MijMjkMklMli〉0
= 〈MijMjk〉0 〈MklMli〉0 + 〈MijMkl〉0 〈MjkMli〉0 + 〈MijMli〉0 〈MjkMkl〉0 .

(2.5)

and the propagator is given by the inverse of the trace pairing:

(2.6) 〈MabMcd〉0 =
 h

N
δadδbc.

As a consequence, we find〈
N
 h

trM4
〉

0
=
N
 h

∑
i,j,k,l

 h

N
δikδll

 h

N
δkiδll +

 h

N
δiiδjl

 h

N
δjlδkk +

 h

N
δilδjk

 h

N
δjiδkl

= 2
N
 h

(
 h

N

)2

N3 +
N
 h

(
 h

N

)2

N

= 2 hN2 +  h.

(2.7)

We can represent graphically the above computation as follows. Associate a 4-valent vertex with half
double lines to each 〈trM4〉0 =

∑
i,j,k,l 〈MijMjkMklMli〉0

i j

j

k

kl

l

i

and associate a double line edge (ribbon) to each propagator 〈MabMcd〉0
a

b

c

d

In computing 〈N h trM4〉0, we have glued half double edge of the vertex with propagators in all possible
ways, obtaining a ribbon graph:

(2.8)
〈
N
 h

trM4
〉

0
=

i

j
j

k

k

l
l

i
+

i

j

j

k
k

l

l

i
+

i

j
j

k
kl

l

i

For a ribbon graph Γ , define its Euler characteristic as

(2.9) χ(Γ) = #vertices − #ribbons + #loops.
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Now, to take into account the powers of N and  h, note that we have a contribution of
• N

 h for each vertex;
•  h
N

for each ribbon;
• N for each loop in the resulting ribbon graph.

As a consequence, we find in the more general case that

(2.10)
〈(

N
 h

trM4
)m〉

0
=

∑
Γ∈R̄4,m

 h`(Γ)
(
N
 h

)χ(Γ)
,

where `(Γ) is the number of loops in Γ and R̄4,m is the set of labeled, (possibly disconnected) ribbon
graphs withm, 4-valent vertices. Thanks to the orbit-stabilizer theorem, one can show that

(2.11)
〈

1
m!

(
N

4 h
trM4

)m〉
0
=

∑
Γ∈R4,m

 h`(Γ)

|Aut(Γ)|

(
N
 h

)χ(Γ)
,

where R4,m is the set of (possibly disconnected) ribbon graphs with m, 4-valent vertices. Thus, the
partition function will be

(2.12) Z =
∑
Γ∈R4

 h`(Γ)

|Aut(Γ)|

(
N
 h

)χ(Γ)
where R4 is the set of ribbon graphs with 4-valent vertices. The fact that the power ofN is a topological
invariant is due to the physics Nobel prize Gerard ’t Hooft [9] and is the origin of the name topological
expansion of Equation (2.18).

An equivalent description is ribbon diagrams is done in terms of dual graphs, called closed maps. In
particular, to every 4-valent vertex we can associate a 4-gon

i j

j

k

kl

l

i

α

β

γ

δ

and glue together half double edges of the vertices corresponds to glue together sides of the faces. The
resulting dual graph is called a closed map. As an example, Equation (2.8) will be written as

(2.13)
〈
N
 h

trM4
〉

0
=

α

β

γ

δ
+

α

β

γ

δ
+

α

β

γ

δ

Note that every closed map (and likewise, every ribbon graph) can be drawn without intersections on
a closed Riemann surface, whose genus is the same as that of the map, that is g(Σ) = 2−χ(Σ)

2 . More
precisely, maps are proper embeddings of graphs in Riemann surfaces. For example, we have

∼= ∼=

Note that in the duality ribbon graphs Γ ←→ closed maps Σ, we have the correspondence
• vertices of Γ ←→ faces of Σ,
• ribbons of Γ ←→ edges of Σ,
• loops of Γ ←→ vertices of Σ,
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and the equality χ(Γ) = χ(Σ), where

(2.14) χ(Σ) = #faces − #edges + #vertices.

As a consequence, Equation (2.12) can be rewritten as

(2.15) Z =
∑
Σ∈M4

 hv(Σ)

|Aut(Σ)|

(
N
 h

)χ(Σ)
.

We can also be more general, considering the potential

(2.16) U(M) =
∑
k>3

tk

k
trMk.

The same arguments leads to the following theorem.

THEOREM (Brézin, Itzykson, Parisi, Zuber [1]). The partition function ZU =
´
e−

N
 h ( 1

2 trM2−U(M))dM is
the generating series for (possibly disconnected) closed maps:

(2.17) ZU =
∑
Σ∈M

 hv(Σ)

|Aut(Σ)|

(
N
 h

)χ(Σ) ∏
k>3

t
nk(Σ)
k ,

where χ is the Euler characteristic, v(Σ) is the number of vertices of Σ and nk(Σ) is the number of k-gons
in Σ. The logarithm FU = ln(ZU) is the generating series for connected maps, and it has a topological
expansion

(2.18) FU =

∞∑
g=0

(
N
 h

)2−2g

Fg, Fg =
∑
v>1

 hv
∑

Σ∈Mconn
g (v)

1
|Aut(Σ)|

∏
k>3

t
nk(Σ)
k

and Mconn
g (v) is the set of connected closed maps of genus gwith v vertices.

We can also compute expectation values with respect to the potential U. In the particular case of
〈trM`1 · · · trM`n〉U, the resulting series is related to the generating series of maps with n fixed bound-
aries of lengths `1, . . . , `n. An interesting application of the QFT point-of-view is that we can easily prove
some non-trivial equations satisfied by expectation values, known as loop equations, that on the enu-
merative side correspond to relations between generating series. In particular, for any matrix-valued
polynomial function g(M), we have

0 =

N∑
i=1

ˆ
∂

∂Mii

(
gii(M)e−

N
 h S(M)

)
dM

+
∑
i<j

ˆ
∂

∂ReMij

(
gij(M)e−

N
 h S(M)

)
dM

− i
∑
i<j

ˆ
∂

∂ImMij

(
gij(M)e−

N
 h S(M)

)
dM.

(2.19)

For the particular case of g(M) =M`1
∏n
k=2 trM`n , we obtain the famous Tutte’s equation, relating the

generating of maps Euler characteristic 2 − 2g + n (that is, genus g and n boundary components) with
maps of higher Euler characteristic.

REMARK. With similar ideas, one can construct other different matrix models which leads to some
enumerative problems. The following partial list is taken from [5].

• The Ising model. With space of field HN ×HN and action given by

S(A,B) =
1
2

tr(A2 + B2 + cAB) −
1
3
(
a trA3 + b trB3)

we obtain the Ising model, whose enumerative counterpart are maps with triangles colored
in two different ways. It arises in connection with statistical physics and the description of
particles with spin up and down.
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• Non-Hermitian matrix model. With space of field MN the space ofN×Nmatrices over C with
measure

dM =
1
ZnH

0

∏
i,j

dReMijdImMij

and action given by

S(M) =
1
2

tr(MM†) −
(
λ trM2(M2)† + µ trMM†MM†

)
,

we obtain a non-Hermitian matrix model describing ribbon graphs with 4-valent vertices and
oriented edges.

• Real and quaternionic matrix model. With space of field SN the space of N × N symmetric
matrices over R with measure

dM =
1
ZR

0

∏
i6j

dMij

and action given by

S(M) =
1
2

trM2 −
1
4

trM4,

we obtain a real matrix model describing ribbon graphs with 4-valent vertices and twisted and
untwisted ribbons. Thus, this models describes properly embedded graphs composed of 4-
gons in (not necessarily oriented) closed, compact surfaces. A similar model can be constructed
for Hermitian quaternionic matrices.

3. Gauge theories

Let us motivate the expression for the gauge-fixed partition function following the exposition of [2, 7].
Consider the space of fields to be an n-dimensional manifold M endowed with a “nice” measure dx
(for example, a measure induced by a top form or, more generally, by a density). Consider a compact
Lie G of dimension lwith an invariant measure dg, acting freely and measure-preserving onM. Take a
smooth function f : M → R (we can think of it as e−S). We can associate to it a new function, denoted
by
´
G f, which is G-invariant: it is the mean value at each orbit, that is

(3.1)
(ˆ

G

f

)
(x) =

ˆ
G

f(g.x)dg.

In the above setting, there exists a unique measure dx̄ on the quotient manifold M = M/G such that
the following relation holds for every function f (see [3], section (3.13) as a reference):

(3.2)
ˆ
M

f(x)dx =

ˆ
M

(ˆ
G

f

)
(x̄)dx̄.

Note that in particular, if f is G-invariant, then we find

(3.3) Z =
1

vol(G)

ˆ
M

f dx =

ˆ
M

f̄ dx̄,

where f̄ are the induced function on the quotient manifold M. Locally, dx is the product measure of dg
and dx̄.

EXAMPLE. Consider M = R2 \ { 0 } and G = S1 acting by rotations. Then M = (0,+∞). Choose
dµ(x,y) = dx∧ dy as the Lebesgue measure on M and dg(φ) = dφ. Note that in polar coordinates we
can write dµ(r,φ) = rdr∧ dφ. Then dµ̄(r) = rdr, and for a S1-invariant function f = f(r), we find

1
2π

ˆ
R2\{ 0 }

f(x,y)dx∧ dy =

ˆ +∞
0

f(r) rdr.

The aim of the section is to write the integral Z in a way suitable for the Feynman graph method.
Suppose there exists a smooth function F : U→ g defined in an open subset U ofM, such that

• π(U) =M,
• F−1(0) ∼=M.
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In physical literature, F is called a gauge-fixing function and F = 0 the gauge fixing. Now, point-wise
we have the decomposition TxU = g⊕ Tx̄M, so that

(3.4) Λ(x) = dxF|g ∈ End(g).

Denote by J(x) its determinant, called the Faddeev-Popov determinant. Then we can use F as a coordi-
nate system onM, localizing the integral along the zero locus of Fwith a delta function and integrating
along the orbits taking into account the change of variable

(3.5) Z =

ˆ
U

f(x)δ
(
F(x)

)
J(x)dx,

where δ is the Dirac delta function.

EXAMPLE (Continuation). Concluding our previous example, we can choose U = { (x,y) ∈ R2 | x > 0 }
and F(x,y) = y. Identifying

T(r,φ)U = R⊕ Tr(0,+∞),

we find J(x,y) = ∂F
∂φ

(x,y) = x. As a consequence, we find the identity

Z =

ˆ
U

f(x,y)δ(y) xdx∧ dy =

ˆ +∞
0

f(x, 0) xdx.

Now, to apply the techniques used so far, we would like to write the delta function and the Faddeev-
Popov determinant in exponential form.
To do so, fix a basis c1, . . . , cl of g, that givs a volume form in Λtopg. Then we are able to integrate over
g. The delta function can be written as an exponential thanks to the Fourier transform

(3.6) δ
(
F(x)

)
=

ˆ
g∗
ei〈ξ,F(x)〉d̄ξ,

where d̄ξ = dξ
(2π)l .

We can also write the determinant as a Berezin integral (see for instance [8]). Consider a real vector
space V and choose a volume form Ω ∈ ΛtopV∗. Then we define the Berezin integral as the projection
of Λ•V∗ onto ΛtopV∗ ∼= R:

(3.7)
(ˆ

ΠV

ω

)
Ω = ωtop.

Here Π stands for the parity operator applied to a super vector space. We want to consider the case of
V = g⊕ g∗. To make it more concretely, consider the basis c1, . . . , cl of g and its dual basis c̄1, . . . , c̄l. The
Grassmann algebra is given by

(3.8) Λ•V∗ = ΛR(c̄
1, · · · , c̄l, c1, . . . , cl, ).

An element inω ∈ Λ is the odd version of a polynomial:

(3.9) ω =
∑
n,m

∑
i1,...,in
j1,...,jm

1
n!m!

ai1...in,j1...jm c̄
i1 · · · c̄incji · · · cjm .

with ai1...in,j1...jm skew-symmetric in the indices i1, . . . , in and j1, . . . , jm. We can define the Berezin
integral by setting

(3.10)

ˆ
ci dcj =

ˆ
c̄i dc̄j = δij

ˆ
dci =

ˆ
dc̄i = 0,

extended to Λ by R-linearity and iteration over dcdc̄ = dcl · · ·dc1dc̄l · · ·dc̄1. Explicitly, forω as above,
we find

(3.11)
ˆ
ΠV

ωdcdc̄ = a1···l,1···l.
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This is in accordance with the previous definition, with volume form onΛtopV∗ given by c̄1 · · · c̄lc1 · · · cl.
For a matrix Λ ∈M(l× l,R), define the element

(3.12) e〈c̄,Λc〉 =
∑
k>0

1
k!

( l∑
i,j=1

Λijc̄
icj

)k
.

Note that the coefficient of c̄1 · · · c̄lc1 · · · cl is precisely detΛ, so that

(3.13)
ˆ
ΠV

e〈c̄,Λc〉 dcdc̄ = detΛ.

With this new formalism, we can finally write J(x) as the Berezin integral over the Grassmann algebra
generated by a basis ci of g and its dual basis c̄i:

(3.14) J(x) =

ˆ
Π(g⊕g∗)

e〈c̄,Λ(x)c〉 dcdc̄.

Putting everything together, we find the expression

(3.15) Z =

ˆ
f(x)ei〈ξ,F(x)〉e〈c̄,Λ(x)c〉 dxd̄Ωξdcdc̄,

where the domain of integration can be written as U× g∗ × Π(g⊕ g∗).

Consider now f = e−S, with S(x) = 1
2 〈x,Ax〉 −  hU(x) for M with a scalar product, and suppose that

F(x) = Bx is linear and defined on the whole M. Then e−S(x)+i〈ξ,F(x)〉+〈c̄,Λ(x)c〉 can be written as e−SF ,
where

(3.16) SF(X, c, c̄) =
1
2
〈X,AFX〉−  hU(X) − 〈c̄,Λc〉

for X = (x, ξ) and AF is non-degenerate:

(3.17) AF =

(
A iBt

iB 0

)
.

Here AF is invertible because its determinant is det (BtB), which is different from zero because B = dF

is of maximal rank.
Then we can write the Feynman diagram expansion of correlation function for the gauge fixed theory.
The quadratic form now consists of two parts: AF and Λ, so there are two types of edges. The first
type presents AF , with the labels xi and ξi at the ends. The second type presents Λ, with the labels ci

and c̄i at the ends. Note that since Λ is not symmetric, these edges are directed. Also, there are new
vertices, presenting all higher degree terms of the Lagrangian (in particular some where edges of both
types meet.
In the physics literature, the “new” fields c and c̄ are called Faddeev-Popov ghost and anti-ghost re-
spectively. This comes from the fact that they can be interpreted as virtual particles, that came out from
the formal manipulation of the partition function, but they do not really exists. More precisely, ghost
particles do not obey the spin-statistic theorem (see [6] for a physics reference) and the name ghosts
actually highlight this feature.

EXAMPLE (Lorenz gauge). In the electromagnetism example, we can consider the gauge fixing function
F : Ω1

0(X)→ C∞
0 (X) given by

(3.18) F(A) = dtA.

Then we have gauge-fixed operator KF acting on the complexified spaceΩ1
0(X)⊕ C∞

0 (X) given by

(3.19) KF =

(
dtd id

idt 0

)
which is non-degenerate (in this case, the term BtB is the Laplacian ∆ acting on functions).
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