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1 Morse Theory
In this section a review of Morse Theory will be given, following (Milnor, 1963). In the following, M

will be a compact oriented smooth m-manifold.

The basic insight of Morse Theory is that a smooth function f : M → R can provide us with information
about the underlying topological structure of the manifold. In particular, for each p ∈ M we have that
f(p) is either a regular value (i.e. dfp : TpM → R is non zero), or f(p) is a critical value. The local
behaviour of f around a regular point can be completely understood up to diffeomorphism by the inverse
function theorem. The question remains how to understand the set of critical points.

The content of Morse Theory is to shed light on the relationship between this set and the topology of
M . We make the following assumption before beginning our analysis. In this work, we will restrict our
study to functions whose Hessian in every critical point is non-degenerate.

Definition 1.1. Let p ∈M be a critical point for f . Define the Hessian in p as

d2fp : TpM × TpM −→ R

(v, w) 7−→ v(w̃f)
(1.1)

where w̃ is a vector field which extends w.

As expected, the Hessian is a symmetric bilinear form. This comes from the fact that

[v, w]pf = dpf [v, w] = 0,

since p is a critical value. This also proves that the definition does not depend on the extension of w.

Definition 1.2. A smooth function f : M → R is called a Morse function such that the Hessian in
every critical point is non-degenerate. Define the Morse index of a critical point p as

µp = #
{
negative eigenvalues of d2fp

}
. (1.2)

A classical example of Morse function is the height function on a torus T2.
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1. Morse Theory

In this case, we have four critical points: p with Morse index µp = 2, q and r with Morse indices are
µq = µr = 1 and s with Morse index µs = 0.

Because of the non-degeneracy character of the Hessian, one can give a local characterization of Morse
functions around any one of the critical points.

Lemma 1.1 (Morse lemma). Let f : M → R be a Morse function, p ∈ M a critical point. Then there
exists a system of coordinates (U, xi) near p such that in these coordinates

f(x) = f(p)−
µp∑
i=1

(xi)2 +

m∑
i=µp+1

(xi)2. (1.3)

In particular, every Morse function on a compact manifold has a finite number of critical points.

The two fundamental results which allow to reconstruct the underlying topological structure of the
manifold M from a Morse function f are the following.

• If one considers the set
Mα = { p ∈M | f(p) ≤ α } , (1.4)

the topology of Mα does not change as we vary α, unless upon varying we pass through a critical
point of f .

• When passing through a critical point, the Morse index of the critical point completely determines
how the topology of Mα changes.

More precisely:

Theorem 1.2. Let f : M → R be a Morse function, α < β real numbers and suppose that {α ≤ f ≤ β }
does not contain critical point of f . Then Mα is a deformation retract of Mβ .

The idea of the proof is somehow simple. If we endow M with a Riemannian structure, then we can
define the gradient ∇f and the associated flow. The deformation retraction is defined as the identity on
Mα ⊂Mβ and through the flow on Mβ \Mα. The following picture illustrates this procedure.

Mβ

∼= Mα

Now if upon varying the level sets we do encounter a critical point p, the fundamental result in this
direction tells us that the resulting level set after deforming has the homotopy type of the original level
set with a µp-dimensional cell attached.

Theorem 1.3. Let f : M → R be a Morse function and p a critical point with f(p) = α and ε > 0
such that f does not have critical points in (α − ε, α + ε) rather than p. Then Mα+ε is homotopically
equivalent to Mα−ε ∪ eµp .

One can construct the handle eµp using the local description of the Morse function, where the attaching
map between the boundary of the µp-dimensional cell and ∂Mα−ε. One uses homotopy-type arguments
using technical results of Whitehead to obtain a cell complex. The picture below shows an example on
the height function of the torus.

pMα+ε ∼=
Mα−ε

eµp
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1. Morse Theory

As a corollary we get:

Corollary. Let p be a non-degenerate critical point of f . Let f(p) = α and assume it is the only critical
point with level α. Then for sufficiently small ε

Hk(Mα−ε,Mα−ε) =

{
Z if q = µp

0 otherwise.
(1.5)

Note that these results can be strengthened to the case where the function f has p1, . . . , pN critical
points at the level α with Morse indices µ1, . . . , µN . Then Mα+ε has the homotopy type of Mα−ε with
N cells attached, each having the dimension of the respective Morse index of the critical point under
consideration. Moreover, for ε sufficiently small, Hk(Mα+ε,Mα−ε) = Znk where nk is the number of
critical points p1, . . . , pN with Morse index k.

We now arrive at the important Morse inequalities, which actually were the original Morse’s point of
view of the subject: the relationship between the topology ofM and the critical point of a Morse function
is described by a collection of inequalities.

Theorem 1.4 (Morse inequalities). Let f : M → R be a Morse function and βk be the kth Betti
number of the singular homology of M . Set

Mk = # { critical points with Morse index k } . (1.6)

• Weak Morse inequality:
βk ≤Mk. (1.7)

• Strong Morse inequality. For every n ∈ { 0, . . . ,m },

n∑
k=0

(−1)n−kβk ≤
n∑
k=0

(−1)n−kMk. (1.8)

• Morse index theorem. Let χ(M) be the Euler-Poincaré characteristic of M . Then

χ(M) =

m∑
k=0

(−1)kMk. (1.9)

Proof. Let α1 < α2 < · · · < αN denote the critical values of f , which are only finitely many by the
compactness of M . Choose real numbers β0, β1, . . . , βN such that βi < αi < βi+1 for all 0 ≤ i ≤ N − 1.
In particular, we have Mβ0 = ∅ and MβN = M . By Theorem 1.2, we have that for any integers i and k
and any small ε > 0,

Hk(Mαi+ε,Mαi−ε) ∼= Hk(Mβi ,Mβi−1).

Hence applying the corollary and the subadditivity properties of the Betti numbers (see the following
remark, Equation (1.10)), we conclude the proof.

Remark. Remember that the Betti number is a subadditive function of pairs of topological spaces: if we
have X ⊃ Y ⊃ Z, then for any integer k

βk(X,Z) ≤ βk(X,Y ) + βk(Y,Z),

where βk(A,B) is the kth Betti number of the relative homology H•(A,B). The same holds true for

Bn(A,B) =

n∑
k=0

(−1)n−kβk(A,B).

Finally, the Euler-Poincaré characteristic is an additive function:

χ(X,Z) = χ(X,Y ) + χ(Y,Z).
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2. Supersymmetric Quantum Mechanics

As a consequence, from the inclusions ∅ = X0 ⊂ X1 ⊂ · · · ⊂ XN = X, we obtain

βk(X) ≤
N∑
i=0

βk(Xi, Xi−1)

Bn(X) ≤
N∑
i=0

Bn(Xi, Xi−1)

χk(X) =

N∑
i=0

χ(Xi, Xi−1).

(1.10)

2 Supersymmetric Quantum Mechanics
In this section a brief introduction on Supersymmetric Quantum Mechanics will be given.

A particular class of quantum mechanical theories are the supersymmetric ones. Supersymmetry
(SUSY) is an extension of the Poincaré symmetry group and it establishes a relation between bosons and
fermions. As we know from Noether’s theorem, we can associate to every symmetry of the Lagrangian a
set of conserved charges. In the case of supersymmetry, these are Hermitian operators, often denoted by
Q, which map bosons to fermions and vice versa:

bosons Q←→ fermion.

More formally, a SUSY theory consists of a Z2-graded Hilbert space H = Hb ⊕Hf, decomposed into the
spaces of bosonic and fermionic states, together with a set of Hermitian SUSY operators Qi, i = 1, . . . , N
mapping Hb to Hf and vice versa. In a SUSY quantum mechanical theory, they must satisfy the SUSY
algebra

[H,Qi] = 0 {Qi, Qj} = 2δijH. (2.1)

In the simplest case, where we have two SUSY operators Q1 and Q2, we can simply set

Q =
1

2
(Q1 + iQ2) Q† =

1

2
(Q1 − iQ2), (2.2)

so that SUSY algebra (2.1) reduces to

Q2 = (Q†)2 = 0 H = QQ† +Q†Q. (2.3)

The operatorsQ andQ† are called supercharges. One of the major physical implication of such a theory, as
we will see in a bit, is the existence of so-called superpartners: for every elementary particle of the bosonic
type, there exists a particle of the fermionic type with equal energy. Dually, every fermionic particle has
a bosonic superpartner of the same energy and mass. This one-to-one correspondence between bosons
and fermions, however, has not been observed in nature. So, for SUSY to play a role in nature it must
be spontaneously broken.

In general, a symmetry is said to be spontaneously broken when the vacuum |0〉 of the theory, the
state of lowest energy, is not invariant under the symmetry. Although the equations of motion themselves
are symmetric, the symmetry is hidden: there are no states which are left invariant by the symmetry.
An example of system with spontaneous symmetry breaking is the double-well potential: although the
potential is symmetric in x→ −x, the ground states of the system, centred at one of the minima, is not.
In defining the vacuum we must choose between one of the minima.

x

V
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3. Morse Inequalities via SUSY

In the case of supersymmetry, we would like to know if the vacuum is invariant under a supersymmetry
transformation. In other words, we would like to know if the vacuum |0〉 is annihilated by the SUSY
operators:

Q |0〉 = Q† |0〉 = 0. (2.4)

The requirement of |0〉 to be annihilated by the SUSY operators comes from the fact that they are the
generators of the symmetry: if Equation (2.4) holds, then

eiεQ |0〉 = (1 + iεQ) |0〉 = |0〉 .

The special form of the SUSY algebra with two generators allows us to rewrite the condition for super-
symmetry breaking. In particular,

〈ψ|H|ψ〉 = 〈ψ|QQ†|ψ〉+ 〈ψ|Q†Q|ψ〉 = ‖Q |ψ〉 ‖2 + ‖Q† |ψ〉 ‖2

so that H is positive definite and

H |ψ〉 = 0 ⇐⇒ Q |ψ〉 = Q† |ψ〉 = 0.

As a consequence, we have a natural lower bound on the energy. If we have a state of zero energy, it
must be the ground state of the system. From the above discussion we draw the important conclusion
that the supersymmetry is broken if and only if the vacuum has energy E > 0.

Summarizing the above discussion, one has a very straightforward procedure for determining whether
supersymmetry is spontaneously broken or not: one must check if the vacuum energy is zero. In attacking
this problem a physicist might be inclined to use perturbation theory: it is often much easier to work with
a local approximation of the potential. However, as it turns out, having found that supersymmetry is
unbroken in perturbation theory does not allow one to conclude that the supersymmetry is also unbroken
in the exact system. If in some approximation the minimum of the potential is zero, an arbitrarily small
quantum effect, shifting the potential by a tiny amount, could lift the minimum to a small but non-zero
value. Then, the supersymmetry would be spontaneously broken. The effects that break the symmetry
here are non-perturbative, i.e. they do not show up in perturbation theory to any finite order. Only
a calculation which reveals the existence of more than one zero of the potential could possibly tell us
something about the supersymmetry being broken or not. These calculations are so-called instanton
calculations, in which the tunneling from one zero to another is evaluated. The non-perturbative effect,
in which a quantum mechanical particle tunnels through a potential barrier, is often responsible for lifting
the vacuum energy slightly above zero. The result is a spontaneous breakdown of supersymmetry.

3 Morse Inequalities via SUSY
This is the main section of the project. The original work is due to Edward Witten (Witten, 1982).

The basic idea of the article is to study a SUSY quantum mechanical model, built on a Riemannian
manifold (M, g) through a Morse function f : M → R. The classical procedure in the analysis of the
Hamiltonian will give us the Morse inequalities relating the topology of M and the critical points of
f : firstly, perturbation theory for the Hamiltonian will lead to the weak Morse inequality, while the
non-perturbative study via instanton analysis will give us the strong Morse inequality.

The underlying Hilbert space of our Quantum Mechanics is the (completion of the) exterior algebra
of the manifold: Ω•(M)C = Ω•(M)⊗ C. As shown in Section A.4, we have a natural definition of scalar
product on Ω•(M)C as soon as M is an orientable compact smooth m-manifold, with

〈ω, η〉 =

∫
M

ω ∧ ∗η (3.1)

if ω, η ∈ Ωk(M)C. Forms of different degree are defined as being orthogonal. The natural operator which
should substitute the Laplace operator in the classical Hamiltonian is the Laplace-de Rham operator

∆ = −(d+ d†)2. (3.2)
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3. Morse Inequalities via SUSY

Here d† is the adjoint of the exterior derivative d, which is given on Ωk(M)C by

d† = (−1)k(m−k) ∗ d∗ (3.3)

In this way, ∆ is a self-adjoint negative-definite linear operator on the exterior algebra. So the free
Hamiltonian will be

H0 = − ~2

2m
∆. (3.4)

Note the H0 is a SUSY Hamiltonian, with

Q1,0 =
~√
2m

(d+ d†), Q2,0 =
i~√
2m

(d− d†),

To simplify the following expressions, let us take ~ = 1 and m = 1
2 . Consider now a Morse function

f : M → R. We define a deformation of the exterior derivative as a sort of “Euclidean evolution” driven
by f from time 0 to s:

d −→ ds = e−fs d efs. (3.5)

The action of ds of the exterior algebra is simply

dsω = e−fs d
(
efsω

)
= e−fs

(
efs s df ∧ ω + efsdω

)
= dω + s εdfω,

where εdf = df∧. Taking into account that the adjoint of the exterior multiplication by a 1-form is the
interior multiplication by the associated vector field, we have

ds = d+ s εdf d†s = d† + s i∇f . (3.6)

The deformed Hamiltonian will be

Hs = (ds + ds)
2 = (d+ s εdf )(d† + s i∇f ) + (d† + s i∇f )(d+ s εdf )

= −∆ + s
(
di∇f + i∇fd+ d†εdf + εdfd

†)+ s2
(
εdf i∇f + εdf i∇f

)
= −∆ + s

(
L∇f + L†∇f

)
+ s2{εdf , i∇f}.

Let us write explicitly the last term:

{εdf , i∇f}ω = df ∧ i∇fω + i∇f (df ∧ ω)

= df ∧ i∇fω + (i∇fdf)ω − df ∧ i∇fω
= i∇f (df)ω,

so that the Hamiltonian reads

Hs = −∆ + s
(
L∇f + L†∇f

)
+ s2 i∇f (df) (3.7)

The Hamiltonian is still supersymmetric, with

Q1,s = (ds + d†s), Q2,s = i(ds − d†s).

The link between Hs and the topology of M comes from the classical Hodge theorem: In fact, note that
ds differs from d only by conjugation by the invertible operator efs, defining an isomorphism of complex
chains.

· · · Ωk(M)C Ωk+1(M)C · · ·

· · · Ωk(M)C Ωk+1(M)C · · ·

d

ds

e−fs e−fs
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3.1 Weak Morse inequality via perturbation theory

From H0 = −∆, we have that

dim ker
(
Hs : Ωk(M)C → Ωk(M)C

)
= dim ker

(
∆: Ωk(M)C → Ωk(M)C

)
= βk, (3.8)

where the last equality is due to Hodge theorem A.3. On the other hand, it is clear that for large time
the potential V = s

(
L∇f + L†∇f

)
+ s2 i∇f (df) tends to become a infinite well near the critical point of

f . We will see how to place upper bounds on βk in terms of the critical points of f , by studying the
spectrum of the Hamiltonian for large s via asymptotic expansion for the eigenvalues in powers of 1/s.

3.1 Weak Morse inequality via perturbation theory
In this section, we will use Einstein summation convention only for repeated upper and lower indices.

For example, aiξiξi means ∑
i

aiξiξi.

Further, we set
(aj)† = εdxj

aj = i∂j .
(3.9)

Note that in our SUSY model, (aj)† can be interpreted as a fermion creation operator, while aj as a
fermion annihilation operator. Further, this notation breaks the index convention of upper and lower
indices (the annihilator operator should be aj rather that aj). However, we preferred this notation in
order to make some formulae more clear.

The expansion of the Hamiltonian can be explicitly calculated in terms of local data at the critical
points. In particular, choose an orthogonal system of coordinates in the neighbourhood of a critical point
p, so that

gij = δij +O(|x|2). (3.10)

Further, with can perform an orthogonal rotation, so that the Hessian in p becomes diagonal:

f(x) = f(p) +
1

2

∑
i

λi(xi)2 +O(|x|3). (3.11)

With xi → xi/
√
s, we can take into account the higher order terms as powers of 1/

√
s. In particular, we

find
gij = δij +O

(
1

s

)
f(x) = f(p) +

1

2s

∑
i

λi(xi)2 +O

(
1

s3/2

)
.

(3.12)

The Laplace-de Rham operator applied to a k-form ω = 1
k!ωi1···ikdx

i1 ∧ · · · ∧ dxik will be

∆ω =
s

k!

∑
i

∂2ωi1···ik
∂xi∂xi

dxi1 ∧ · · · ∧ dxik +O
(√
s
)
. (3.13)

The computations can be find in (Felsager, 1998), with a slighly modification for taking into account the
corrections in 1/

√
s. On the other hand

∇f =

(
1√
s
λixi +O

(
1

s

))
∂

∂xi
, (3.14)

so that the Lie derivative along ∇f acts on Ωk(M)C as

L∇fω =
1

k!

(
1√
s
λixi +O

(
1

s

))
∂ωi1···ik
∂xi

dxi1 ∧ · · · ∧ dxik+

+
1

k!

k∑
n=1

(−1)n−1
√
s
∂(∇f)in

∂xn
ωi1···ikdx

n ∧ dxi1 ∧ · · · ∧ d̂xin ∧ · · · ∧ dxik .
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3.1 Weak Morse inequality via perturbation theory

The derivatives of the components of ∇f are

∂(∇f)in

∂xn
=

1√
s
λinδinn +O

(
1

s

)
,

so that

L∇fω =
1

k!

k∑
n=1

(−1)n−1λinδinn ωi1···ikdx
n ∧ dxi1 ∧ · · · ∧ d̂xin ∧ · · · ∧ dxik +O

(
1√
s

)
=

1

k!
λinωi1···ikdx

i1 ∧ · · · ∧ dxik +O

(
1√
s

)
On the other hand, consider the operator

∑
i λ

i (ai)†ai. On Ωk(M)C it acts as

∑
i

λi (ai)†
(
aiω
)

=
1

k!
λi dxi

(
k∑

n=1

(−1)n−1δini ωi1···ik ∧ dx
i1 ∧ · · · ∧ d̂xin ∧ · · · ∧ dxik

)

=
1

k!
λinωi1···ikdx

i1 ∧ · · · ∧ dxik .

In particular,

L∇f =
∑
i

λi (ai)†ai +O

(
1√
s

)
.

In the same way, it is possible to prove that

L†∇f = −
∑
i

λi ai(ai)† +O

(
1√
s

)
.

The first term in the potential becomes

s
(
L∇f + L†∇f

)
= s

∑
i

λi
[
(ai)†, ai

]
+O

(√
s
)
.

Finally, the last term of the potential will be

s2 i∇f (df) = gij∂if∂jf = s2δij

(
1√
s
λixi +O

(
1

s

))(
1√
s
λjxj +O

(
1

s

))
= s

∑
i

(λixi)2 +O
(√
s
)
.

The Hamiltonian will be

Hs = s

m∑
i=1

(
− ∂2

∂xi∂xi
+ (λixi)2 + λi

[
(ai)†, ai

])
+O

(√
s
)
. (3.15)

We see that in leading approximation, the problem separates into m one-dimensional problems, each with
Hamiltonian sH ′ where

H ′ = − ∂2

∂x2
+ λ2x2 + λ

[
εdx, i∂

]
. (3.16)

Note that H ′ is the sum of a harmonic-oscillator Hamiltonian and an operator of the form K = λ
[
εdx, i∂

]
.

Further, the two operators commute, so that they can be simultaneously diagonalised. The eigenvalues
of the harmonic Hamiltonian are well-known:

|λ|(1 + 2N), N = 0, 1, 2, . . .

and the eigenforms are
ω = ϕdxi1 ∧ · · · ∧ dxik , (3.17)
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3.2 Morse-Smale-Witten cochain complex via instanton analysis

where ϕ is an eigenfunction of the harmonic oscillator Hamiltonian. The operator K has eigenvalues ±λ,
as can be seen by

[
(ai)†, ai

]
ϕdxi1 ∧ · · · ∧ dxik =

{
ϕdxi1 ∧ · · · ∧ dxik if i = in for some n ∈ { 1, . . . , k }
−ϕdxi1 ∧ · · · ∧ dxik if i 6= in ∀ n ∈ { 1, . . . , k } .

(3.18)

In other words, the form ω = ϕdxi1 ∧ · · · ∧ dxik is an eigenstate for
[
(ai)†, ai

]
of eigenvalue +1 if the

fermion dxi is present in ω, −1 if it is not. As a consequence, the eigenvalues of Hs in the leading order
will be

t

m∑
i=1

(
|λi|(1 + 2N (i))± λi

)
, N (i) = 0, 1, 2, . . . (3.19)

It is clear now that there is just one possibility to have zero eigenvalue at leading order: all the N (i) must
be zero and the ±1 must be chosen in the following way: +1 if λi < 0, −1 if λi > 0. From Equation (3.18),
it turns out that the eigenform associated to the zeroth eigenvalue is a µp-form, where µp is Morse index
in p. As a consequence, at leading order the kernel of Hs on Ωk(M)C is nothing but Mk.

To summarize, we have been discussing the states localized near one critical point, but the low-lying
eigenform of Hs for large s may of course be localized near any critical point on the manifold. Taking
account of all the critical points, we see that for every critical point p, Hs has just one eigenstate ω whose
energy does not diverge with s. Moreover, ω is a k-form if p has Morse index k. It is not necessarily the
case that Hs annihilates all the states ω: we have only shown that the leading coefficients in perturbation
theory vanish. But Hs certainly does not annihilate any of the other states, whose energy is proportional
to s for large s. So at most the number of zero energy k-forms equals the number of critical points of
Morse index k: we have established the weak Morse inequality

βk ≤Mk. (3.20)

Further, note that the perturnative ground state (i.e. the ground state of H ′) is proportional to the
µp-form

ωp = e−s
∑

i |λ
i|(xi)2

∧
j :λj<0

dxj , (3.21)

In particular, ωp tends to a delta function concentrated in p as s→ +∞.

3.2 Morse-Smale-Witten cochain complex via instanton analysis
We have just proved the weak Morse inequality computing the leading contribution to the spectrum

of Hs. From a more accurate calculation of the spectrum, one can hope to get a better upper bound on
the number of zero eigenvalues and thereby to strengthen the Morse inequality. However, all other terms
in the asymptotic expansion vanish for all those states whose energy vanishes in lowest order thanks to
SUSY. This really follows from the fact that the coefficients in perturbation theory can all be calculated
in terms of local data at the critical points. From local data one cannot tell whether a given critical point
is required by the topology or not. So all of the states which have zero energy in the first approximation
remain at zero energy to all orders in s. In particular, the strong Morse inequality establishes an interplay
of the different Morse indices.

To learn something new we must perform a calculation which is sensitive to the existence onM of more
than one critical point. Since the potential energy in our problem, V = s(L∇f + L†∇f ) + s2i∇f (df), has
more than one minimum (one for each critical point), we must allow for the possibility of “tunnelling” from
one critical point to another. This non-perturbative effect can be calculated via semiclassical trajectories
in imaginary time called instantons.

Before computing the non-perturbative contributions, we have to construct the action which deter-
mines the dynamic. We begin by considering a particle propagating on the manifold (M, g). A massless
bosonic particle is denoted by φ : R → M , where R represents the time parametrized by t. Moreover,
we have Grassmann fields ψ and ψ̄ tangent to M which are complex conjugates of each other describing
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3.2 Morse-Smale-Witten cochain complex via instanton analysis

the fermionic superpartners of φ. More formally, φ ∈ C∞(R,M) and ψ, ψ̄ ∈ Γ∞(R, φ∗TM ⊗ C). In local
coordinates (xi) we thus have the bosonic variables φi and fermionic variables ψi, ψ̄i. The dynamics of
the system is described by the supersymmetric non-linear sigma model Lagrangian

L(φ, ψ̄, ψ) =
1

2
gij φ̇

iφ̇j +
i

2
gij(ψ̄

iDtψ
j −Dtψ̄

iψj) +
1

4
Rijlnψ̄

iψjψ̄lψn

− s ∂2f

∂xi∂xj
ψ̄iψj − 1

2
s2gij

∂f

∂xi
∂f

∂xj
,

(3.22)

where
Dtψ

i = ψ̇i + Γijkφ̇
jψk.

is the pull-back of the covariant derivative, Γkij are the Christoffel symbols of the Levi-Civita connection
and Rijln is the Riemann curvature tensor. This Lagrangian can be naturally constructed from a simpler
one, imposing supersymmetry. See for istance (Freedman and Townsend, 1981). In order to simplify the
computations, let us assume to be working in flat space. The Lagrangian simplifies substantially in

L(φ, ψ̄, ψ) =
1

2
gij φ̇

iφ̇j +
i

2
gij(ψ̄

iψ̇j − ˙̄ψiψj)− s ∂2f

∂xi∂xj
ψ̄iψj − 1

2
s2gij

∂f

∂xi
∂f

∂xj
. (3.23)

It can be shown that the above action is invariant under supersymmetry transformations

δφi = εψ̄i − ε̄ψi

δψi = ε
(
iφ̇i + gij∂jf

)
δψ̄i = ε̄

(
−iφ̇i + gij∂jf

)
,

(3.24)

which by Noether’s procedure gives conserved charges

Q = ψ̄i(igij φ̇
j + ∂if), Q̄ = ψi(−igij φ̇

j + ∂if). (3.25)

Let us quantize the above theory. The conjugate momenta are

pi =
∂L

∂φ̇i
= gij φ̇

j

πi =
∂L

∂ψ̇i
=

i

2
gijψ̄

j .

(3.26)

The canonical (anti)commutation relations are

[φi, pj ] = iδij

{ψi, ψ̄j} = gij
(3.27)

and all other relations vanishing. The supercharges become

Q = ψ̄i(ipi + ∂if), Q̄ = ψi(−ipi + ∂if). (3.28)

The ordering ambiguity in the Hamiltonian is fixed by setting

H =
1

2
{Q, Q̄}. (3.29)

Using the anticommutation relations, we find

H =
1

2

(
ψ̄i(ipi + ∂if)ψi(−ipi + ∂if) + ψi(−ipi + ∂if)ψ̄i(ipi + ∂if)

)
=

1

2

(
pipj + i(∂jfpi − ∂ifpj) + ∂if∂jf

)(
ψ̄iψj + ψjψ̄i

)
=

1

2
gij
(
pipj + i(∂jfpi − ∂ifpj) + ∂if∂jf

)
.
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3.2 Morse-Smale-Witten cochain complex via instanton analysis

Quantization is not complete unless we specify the representation of the above algebra. The natural
choice is the complexified space of differential forms

H = Ω•(M)C (3.30)

with the Hermitian inner product

(ω, η) =

∫
M

ω ∧ ∗η. (3.31)

The observables are

φk = xk· pk = −i∂k

ψ̄k = εdxk ψk = i∂k .
(3.32)

The supercharge Q becomes

Qω = dxi ∧ (∂i + ∂if)ω

= dω + εdfω
(3.33)

and taking the adjoint, Q̄ = Q† = d† + i∇f .

We are now ready to derive the instanton solutions from the action. In doing so we will closely follow
(Hori, 2003). Recall that we have previously found a perturbative ground state ωp for every critical point
p of f . Here ωp is a µp-form when p has index µp. However, it is not necessarily the case that each ωp
determines a supersymmetric ground state in the full theory. In other words,

Qωp = 0

does not necessarily have to be satisfied. Although the above equation holds to all orders in perturbation
theory, in the full theory we should expect an expansion

Qωp =
∑

critical
points

〈ωq, Qωp〉ωq + · · · , (3.34)

where the ignored terms correspond to the expansions in the non-zero energy states. They can be
neglected, since their energy is proportional to s, and they differ from the first terms by powers of s−1.
The elements

〈ωq, Qωp〉 =

∫
M

ωq ∧ ∗
(
Qωp

)
(3.35)

we want to compute are the non-perturbative corrections to the matrix elements of Q, representing the
amplitudes associated to tunnelling paths between the critical points p and q. If the tunnelling amplitudes
do not cancel, the sum gives a non-zero contribution, revealing the perturbative ground state ωp to be
a state with non-zero energy in the exact system. Notice that, since ωq is a µq-form and Qωp is a
(µp + 1)-form, the above matrix element is zero only if

µq 6= µp + 1. (3.36)

Thus, tunnelling corrections are only between states with relative Morse index one.

To go on with the instanton analysis, we would like to rewrite the matrix elements 〈ωq, Qωp〉 using
the path integral formalism. Recall that in the large s limit the ground state wave functions are sharply
peaked near the critical points of f , i.e. ωp is an approximate delta function at p for large s. In this limit
the Morse function f may be viewed as an operator acting on the ground states by

fωp = f(p)ωp +O

(
1

t

)
. (3.37)

11



3.2 Morse-Smale-Witten cochain complex via instanton analysis

This is a consequence of the Gaussian form of the perturbative ground states (see Equation (3.21)). Then

〈ωq, Qωp〉 =
1

f(p)− f(q)
〈ωq,

(
Qf(p)− f(p)Q

)
ωp〉

=
1

f(p)− f(q)
〈ωq,

[
Q, f

]
ωp〉+O

(
1

t

)
=

1

f(p)− f(q)
lim

t→+∞
〈ωq, e−tH

[
Q, f

]
e−tHωp〉+O

(
1

t

)
.

The operators e−tH in the limit t→ +∞ project a state to the perturbative ground states. In this case,
they do nothing (because ωq and ωp are already perturbative ground states), but it will let us write the
expression as an Euclidean path integral. Note that[

Q, f
]
ω = (d+ df∧)(fω)− f(d+ df∧)ω

= df ∧ ω + fdω + f df ∧ ω − fdω − f df ∧ ω
= εdfω,

so that the path integral representation will be

〈ωq, Qωp〉 =
1

f(p)− f(q)

∫
DφDψ̄Dψ ψ̄k ∂f

∂xk
e−SE [φ,ψ,ψ̄] (3.38)

The integration is performed over bosonic fields φ such that φ(−∞) = p and φ(+∞) = q, while ψ and ψ̄
fall off sufficiently fast. The Euclidean action can be constructed from the Lagrangian (3.22) integrating
in t and setting t→ −it:

SE [φ, ψ̄, ψ] =

∫
R
dt

(
1

2
gij φ̇

iφ̇j +
1

2
gij(ψ̄

iψ̇j − ˙̄ψiψj) + s
∂2f

∂xi∂xj
ψ̄iψj +

1

2
s2gij

∂f

∂xi
∂f

∂xj

)
. (3.39)

In order to compute the transition amplitude (3.38), we can separately analyse the contribution from the
bosonic action and from the fermionic one. The bosonic part can be written as

Sb[φ] =

∫
R
dt

(
1

2

∣∣∣∣φ̇i ± s gij ∂f∂xj
∣∣∣∣2 ∓ s φ̇i ∂f∂xi

)

=

∫
R
dt

(
1

2

∣∣∣∣φ̇i ± s gij ∂f∂xj
∣∣∣∣2 ∓ s ḟ

)

=
1

2

∫
R
dt

∣∣∣∣φ̇i ± s gij ∂f∂xj
∣∣∣∣2 ∓ s(f(q)− f(p)

)
.

Here the square has to be intended as the as contraction with the metric. In particular, we have a lower
bound for SE if

φ̇i = ∓s gij ∂f
∂xj

, (3.40)

where the plus sign corresponds to f(q) > f(p) and the minus sign to f(q) < f(p). These are the
instantons and anti-instantons and are interpreted as the steepest ascending and steepest descending
paths from p to q. It can be shown, thanks to supersymmetry, that the dominant contributions come
from the paths of steepest ascend: the path-integral is non-vanishing only if f(q) > f(p). Thus, the
relevant instanton for the present computation is an ascending gradient flow which starts from p and
ends on q. The bosonic action for such paths is

I = s
(
f(q)− f(p)

)
, (3.41)

so that the contribution to the transition amplitude will decrease exponentially fast as s→ +∞. Further,
its non-analyticity for large s explains why this contribution was not captured in the perturbative analysis.
The first order variation of the instanton equations reads

˙δφi = s gij
∂2f

∂xj∂xk
δφk. (3.42)

12



3.2 Morse-Smale-Witten cochain complex via instanton analysis

In particular, the differential operators

D±χi = χ̇i ± s gij ∂2f

∂xj∂xk
χk (3.43)

turn out to be very important also in the fermionic scenario. Indeed, the fermionic action can be written
as

Sf[ψ̄, ψ] =

∫
R
dt

(
1

2
gij(ψ̄

iψ̇j − ˙̄ψiψj) + s
∂2f

∂xi∂xj
ψ̄iψj

)
=

∫
R
dt gij

(
ψ̄iψ̇j + s gjk

∂2f

∂xk∂xl
ψ̄iψl

)
=

∫
R
dt gijψ̄

iD+ψ
j = −

∫
R
dt gijD−ψ̄iψj .

(3.44)

For the path integral in (3.38) to be non-vanishing, the number of ψ̄ zero modes must be larger than
the number of ψ zero modes by one, since there is a single insertion of ψ̄. Thus, the path integral is
non-vanishing if and only if

dim kerD− − dim kerD+ = 1.

Noting that D− are adjoint, we find

IndD− = dim kerD− − dim cokerD− = dim kerD− − dim kerD+ = 1,

where IndD− is the index of D−. This index can be computed by means of Hessian spectral flow as in
(Hori, 2003). It turns out that, for paths connecting the critical points p and q, the index is

IndD− = µq − µp, (3.45)

so that we find the previous result µq = µp + 1. We are finally ready to evaluate the path integral.
Changing the variable φ = γ + ξ, where γ is the insatanton solution of (3.42) and ξ is the fluctuation,
the action in the quadratic approximation reads

SE = I +

∫
R
dt
(
|D−ξ|2 − gijD−ψ̄iψj

)
. (3.46)

We have made here the assumption that the Morse function f is generic in the sense that

dim kerD+ = 0 (3.47)

for any instanton from p to q with ∆µ = 1. Then the only deformation of the instanton γ is a time
translation γτ (t) = γ(t+ τ). As a consequence, an instanton can be determined by its “centre” τ and will
be indicated as γτ . There is only one-dimensional kernel of D− given by

dγτ
dτ

∣∣∣
t=0

=
dγ

dt

∣∣∣
t=τ

(3.48)

and there is no kernel of D+. Thus, there is one ξ zero mode, one ψ̄ zero mode and no ψ zero mode. The
integration variable for the ξ zero mode is τ and we denote by ψ̄0 the variable for the ψ̄ zero mode. In
particular the variable ψ̄ is expanded as

ψ̄i =
dγτ
dτ

∣∣∣
t=0

ψ̄0 + non-zero modes. (3.49)

In particular, we have to take into account the non-zero mode contribution an the zero mode one. The
first contribution is given by the determinant ratio

det′D−√
det′ (D−)2

= ±1, (3.50)
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3.2 Morse-Smale-Witten cochain complex via instanton analysis

where det′ do not take into account the zero mode contribution. This is given by∫
R
dτ

∫
dψ̄0

dγiτ
dτ

∣∣∣
t=0

ψ̄0
∂f

∂xi

∣∣∣
t=0

=

∫
R
dτ
dγi(τ)

dτ

∂f(γ(τ))

∂xi
= f(q)− f(p). (3.51)

Thus, we obtain the following contribution from the instanton γ:

±
(
f(q)− f(p)

)
eI . (3.52)

Summing up the instantons and and including the prefactor from (3.38), we find

〈ωq, Qωp〉 =
∑
γ

nγe
−I , nγ = ±1, I = s(f(q)− f(p)). (3.53)

The sign of nγ can be determined as follows. The integral
∫
M
ωq ∧∗Qωp receives dominant contributions

along the steepest ascents. For each steepest ascent γ, nγ is 1 or −1 depending on whether the orientation
determined by ωq ∧ ∗Qωp along γ matches with the orientation of M or not. The form ωp defines
an orientation of the µp-dimensional plane T−p M of negative eigenvectors of d2

pf . This plane can be
transported along the steepest ascent and we obtain a subbundle Ep of γ∗TM with the orientation
determined by ωp. Starting with the space of negative eigenvectors at q, we obtain another subbundle
Eq with the orientation determined by ωq. In the generic situation, only a single eigenvalue goes from
positive to negative along the ascent and the eigenvector is the tangent vector vγ to γ. Then Ep is a
subbundle of Eq and the complement is spanned by vγ . Now, Qωp defines an orientation of Rvγ ⊕ Ep.
Thus, nγ = 1 if this matches with the orientation determined by ωp and nγ = −1 otherwise.

From what we have seen by the path-integral analysis, we conclude that in the one-instanton approx-
imation

Qωp =
∑

µq=µp+1

e−s(f(q)−f(p))
∑
γ

nγωq. (3.54)

The exponential can be eliminated by rescaling the wave functions ω. This is the action of the supercharge
Q on the perturbative ground states. Since the original supercharge Q is nilpotent, it should also be
nilpotent when acting on ωp’s. Thus, if we define the graded space of perturbative ground states

Ck =
⊕
µp=k

R 〈ωp〉 , (3.55)

we find the cochain complex with the coboundary operator given by the supercharge

0 C0 · · · Cm 0
Q Q

The pair (C•, Q) is called the Morse-Smale-Witten cochain complex of f . From

βk = dim ker
(
Hs : Ωk(M)C → Ωk(M)C

)
(3.56)

and the fact that Hω = 0 if and only if Qω = 0, we find that the cohomology of (C•, Q) is nothing but
the de Rham cohomology of M .

As a first example, consider the height function on a horned sphere. We have four approximate vacua,
one for each critical point. In Figure 1 the instanton paths γ are given with corresponding signs nγ . With
the correctly normalised perturbative ground states, we have

0 R 〈ωs〉 R 〈ωr〉 R 〈ωp〉 ⊕ R 〈ωq〉 0.0 ωp−ωq

As a consequence,

H0
(
(C•, Q)

)
=

ker
(
R 〈ωs〉

0−→ R 〈ωr〉
)

Im
(
0→ R 〈ωs〉

) =
R 〈ωs〉

(0)
∼= R

H1
(
(C•, Q)

)
=

ker
(
R 〈ωr〉

ωp−ωq−−−−→ R 〈ωp〉 ⊕ R 〈ωq〉
)

Im
(
R 〈ωs〉

0−→ R 〈ωr〉
) =

(0)

(0)
∼= 0
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Rfp

µp = 2

q

µq = 2

r
µr = 1

s

µs = 0

p q

r

s

+1

−1

+1 −1

Figure 1: Height function on the horned sphere with instantons.

H2
(
(C•, Q)

)
=

ker
(
R 〈ωp〉 ⊕ R 〈ωq〉 → 0

)
Im
(
R 〈ωr〉

ωp−ωq−−−−→ R 〈ωp〉 ⊕ R 〈ωq〉
) =

R 〈ωp〉 ⊕ R 〈ωq〉
R 〈ωp − ωq〉

∼= R

and we have recovered the cohomology of the sphere.

As a second example, consider the height function on the torus. Due to the many symmetries,
this Morse function is not generic. However, the height function on a tilted torus works. We have
four approximate vacua, one for each critical point. In Figure 2 the instanton paths γ are given with
corresponding signs nγ . With the correctly normalised perturbative ground states, we have

0 R 〈ωs〉 R 〈ωq〉 ⊕ R 〈ωr〉 R 〈ωp〉 0.0 0

As a consequence,

H0
(
(C•, Q)

)
=

ker
(
R 〈ωs〉

0−→ R 〈ωq〉 ⊕ R 〈ωr〉
)

Im
(
0→ R 〈ωs〉

) =
R 〈ωs〉

(0)
∼= R

H1
(
(C•, Q)

)
=

ker
(
R 〈ωq〉 ⊕ R 〈ωr〉

0−→ R 〈ωp〉
)

Im
(
R 〈ωs〉

0−→ R 〈ωq〉 ⊕ R 〈ωr〉
) =

R 〈ωq〉 ⊕ R 〈ωr〉
(0)

∼= R2

H2
(
(C•, Q)

)
=

ker
(
R 〈ωp〉 → 0

)
Im
(
R 〈ωq〉 ⊕ R 〈ωr〉

0−→ R 〈ωp〉
) =

R 〈ωp〉
(0)

∼= R

and we have recovered the cohomology of the torus.

R
f

p

µp = 2

q
µq = 1

r
µr = 1

s

µs = 0

p

q

r

s

+1
−1

+1
−1

+1 −1

+1 −1

Figure 2: Height function on the tilted torus with instantons.
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A. Riemannian Geometry and Hodge Theory

A Riemannian Geometry and Hodge Theory

A.1 Covariant derivative
This appendix is based on (Nakahara, 2003), where the reader can find deeper explanations and

the proof of the stated theorems. In a differentiable manifold, a natural question is how to make the
derivative of a vector field. In order to do that, we should be able to compare tangent vectors in different
points p and q. A possibility is to “transport in parallel” a vector from p to q. Indeed, suppose p
has coordinates (x1, . . . , xm) and consider an infinitesimal displacement along the ath direction: q with
coordinates (x1, . . . , xa + ∆xa, . . . , xm). Having fixed a vector field X, the “derivative” of X along the
ath direction will be a vector, whose value in p is

(∇aX)p = lim
∆xa→0

Xc
q − X̃c

q

∆xa
∂

∂xc

∣∣∣
p
, (A.1)

where X̃q is the vector Xp parallel transported to q along the segment pq. Let us assume that

X̃c
q = Xc

p −Xb
pΓcab∆x

a, (A.2)

so that X̃c
q −Xc

p ∝ ∆x and the parallel transport is linear: X̃ + Y cq = X̃c
q + Ỹ cq . Then

(∇aX)p =

(
∂Xc

∂xa

∣∣∣
p

+Xb
pΓcab

)
∂

∂xc

∣∣∣
p
. (A.3)

This idea leads to the definition of covariant derivative.

Definition A.1. Let M be a manifold. A covariant derivative (or affine connection) is a map

∇ : X(M)× X(M) −→ X(M)

X,Y 7−→ ∇XY
(A.4)

such that the following conditions hold:

∇X(Y + Z) = ∇XY +∇XZ
∇X+Y Z = ∇XZ +∇Y Z
∇fXY = f ∇XY
∇XfY = X(f)Y + f ∇XY,

(A.5)

where f ∈ C∞(M).

If (U, xa) is a local chart of M , we set for complicity ea = ∂
∂xa . Then we can determine the functions

Γcab, called the connection coefficients, as

∇eaeb = Γcabec. (A.6)

In the following, we will write for simplicity ∇a = ∇ea . With the connection coefficients, we are able to
calculate in coordinates the action of ∇ on any vector. If X = Xaea, Y = Y aea then

∇XY = Xa∇a(Y beb) = Xa (ea(Y b) eb + Y b∇aeb)

= Xa

(
∂Y c

∂xa
+ ΓcabY

b

)
ec

(A.7)

The covariant derivative immediately generalises to tensor fields. First of all, let us define the covariant
derivative for f ∈ C∞(M) as the directional derivative:

∇Xf = X(f). (A.8)

Note that in this notation the last equation in (A.5) is nothing but the Leibnitz rule. Then the covariant
derivative of a generic tensor field is done by induction, after having required the Leibnitz rule to hold

∇X(T ⊗ S) = ∇XT ⊗ S + T ⊗∇XS. (A.9)
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A.2 Riemannian manifolds

For example, the covariant derivative of ω ∈ Ω1(M) is computed as

X(〈ω, Y 〉) = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉 =⇒ 〈∇Xω, Y 〉 = X(〈ω, Y 〉)− 〈ω,∇XY 〉 . (A.10)

In coordinates and with X = ea, we find

(∇aω)b = ∂aωb − Γcabωc. (A.11)

For a general tensor field,

(∇aT )
c1···cp
b1···bq = ∂aT

c1···cp
b1···bq +

p∑
i=1

ΓciadT
c1···d···cp
b1···bq −

q∑
j=1

ΓdabjT
c1···cp
b1···d···bq . (A.12)

The covariant derivative allows the parallel transport along a curve. Take γ : I → M and define the
tangent vector as

Vγ(t) =
d

dt

∣∣∣
γ(t)

=
dxa(γ(t))

dt
ea

∣∣∣
γ(t)

. (A.13)

A vector field X (at least defined on γ) is parallel transported along γ if

∇VX = 0. (A.14)

In components
dxa

dt

(
∂Xc

∂xa
+ ΓcabX

b

)
ec = 0 =⇒ dXc

dt
+ Γcab

dxa

dt
Xb = 0. (A.15)

The notion of parallel transport along a curve allows us to define the concept of geodesics, i.e. the
“straightest possible curves” on a manifold with affine connection. In particular, the geodesic is a curve
whose tangent vector V is parallel transported along the curve itself:

∇V V = 0. (A.16)

In components, the geodesic equation reads

dxc

dt
+ Γcab

dxa

dt

dxb

dt
= 0. (A.17)

A weaker requirement is that any change of the tangent vector along the curve is still parallel to V :
∇V V = fV , with f a smooth function on γ. However, with the right parametrization, this Equation
reduces to (A.16).

A.2 Riemannian manifolds
With the covariant derivative, we can give an affine structure to manifolds. The next step is the

introduction of an Euclidean structure with the notion of Riemannian metric.

Definition A.2. Let M be a differentiable manifold. A Riemannian metric on M is a (0, 2) tensor
field on M such that for every p ∈M and for every v, w ∈ Tp(M) the following axioms holds true:

• gp(v, w) = gp(w, u),

• gp(v, v) ≥ 0 and the equality holds if and only if v = 0.

The pair (M, g) is called a Riemannian manifold.

In the following, M will be a Riemannian manifold of dimension m with Riemannian metric g. If
(U, xa) is a chart of M , then for every p ∈ U we can write g in coordinates as

gp = gab(p) dx
a ⊗ dxb. (A.18)

We will usually omit the dependence on p in gab(p). Note that, since gab is positive definite, it is invertible,
with inverse indicated as

(gab)
−1 = gab.
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A.3 Torsion, Levi-Civita connection and Riemann curvature tensor

As usual, we will use g to rise or lower indices:

Aa = gabA
b, Aa = gabAb.

In principle, covariant derivative and Riemannian metric have nothing to do with each other. Nevertheless,
for a manifold M with both structures a natural condition arises: the metric should be covariantly
constant, i.e. if two vector fields X and Y are parallel transported along any curve, then their inner
product remains constant under parallel transport:

∇V g(X,Y ) = 0 if ∇VX = ∇V Y = 0, (A.19)

for every curve and X,Y ∈ X(M). In this case the covariant derivative is said to be metric compatible.
In coordinate, Equation (A.19) becomes

0 = V c
(
(∇c g)ab)X

aY b + g(∇cX,Y ) + g(X,∇cY
)

= V c
(
(∇c g)ab

)
XaY b, (A.20)

which simplifies in (
∇c g

)
ab

= ∂c gab − Γdcagdb − Γdcbgda = 0 (A.21)

since it must hold for every curve and vector fields. With cyclic permutation of (a b c), we find

∂a gbc − Γdabgdc − Γdbagdc = 0 (A.22)

∂b gca − Γdbcgda − Γdacgdb = 0 (A.23)

and the combination −(A.21)+(A.22)+(A.23) leads to

∂a gbc + ∂b gca − ∂c gab + T dcagdb + T dcbgda − 2Γd(ab)gcd = 0. (A.24)

Here T cab = 2Γc[ab] is called the torsion tensor. Solving for Γd(ab), we obtain

Γd(ab) =

{
d

ab

}
+

1

2

(
T c
a b + T c

b a

)
, (A.25)

where
{
d
ab

}
are the Christoffel symbols{

d

ab

}
=

1

2
gdc
(
∂a gbc + ∂b gca − ∂c gab

)
. (A.26)

Finally, with Γdab = 1
2T

d
ab + Γd(ab), we find the metric compatible condition

Γdab =

{
d

ab

}
+

1

2

(
T dab + T c

a b + T c
b a

)
, (A.27)

In the next section we will further simplify Equation (A.27), arriving to the so-called Levi-Civita connec-
tion.

A.3 Torsion, Levi-Civita connection and Riemann curvature tensor
The connection coefficients do not form a tensor and, so that they cannot have an intrinsic geometric

meaning. Nevertheless, its antisymmetric part, the torsion tensor, is a (1 2) tensor. Its intrinsic definition
is T : X(M)× X(M)→ X(M),

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (A.28)

In components, we find exactly the previous definition of T cab:

T cab = 〈dxc,∇aeb −∇bea〉 = 〈dxc, (Γdab − Γdba)ed〉
= (Γdab − Γdba) 〈dxc, ed〉 = Γcab − Γcba

= 2Γd[ab].

(A.29)
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A.4 Hodge theory

Let us see the geometric meaning of the torsion. Consider a point p with coordinates (xa) and two in-
finitesimal tangent vectors in TpM : Xp = εaea(p), Yp = δaea(p). They can be seen as small displacements
on M to points q and r with coordinates (xa + εa) and (xa + δa) respectively. If we parallel transport Y
along pq we obtain a vector of coordinates (see Equation (A.2))

δc − δaΓcabε
b. (A.30)

With the same procedure for X along pr, we obtain

εc − εaΓcabδ
b. (A.31)

Viewing them as small displacements on M (see Figure ??), we obtain two point q′ and r′ of coordinates
(xc + εc + δc − δaΓcabε

b) and (xc + δc + εc − εaΓcabδ
b) respectively. The difference between them will be

− δaΓcabε
b + εaΓcabδ

b = εa(Γcab − Γcba)δb = T cabε
aδb. (A.32)

In this sense, the torsion measures the failure in the closure of the parallelogram made up by small
displacements and their parallel transports.

Definition A.3. A connection ∇ on a manifold M is called symmetric if the torsion tensor vanishes. In
particular, the connection coefficients are symmetric:

Γcab = Γcba. (A.33)

A natural requirement for a connection ∇ is the symmetric condition. In a Riemannian manifold we
have seen a second condition of compatibility. it turns out that these two conditions uniquely determine
a connection in a Riemannian manifold.

Theorem A.1 (The fundamental theorem of Riemannian geometry). On a Riemannian manifold (M, g)
there exists a unique symmetric connection which is compatible with the metric. This is called the
Levi-Civita connection and its connection coefficients are given by the Christoffel symbols:

Γcba =

{
c

ab

}
. (A.34)

A.4 Hodge theory
One of the main properties of oriented Riemannian manifolds is the presence of a “natural” volume

form. Since gab is positive definite, we can define locally the invariant volume form as

ΩM =
√
|g| dx1 ∧ · · · ∧ dxm.

where |g| = det gab. Let us check that ΩM is well defined: if (U, xa), (V, ya) are charts of an oriented
atlas with U ∩ V 6= ∅, then

ΩM =

√
det

(
∂ya

∂xc
∂yb

∂xd
gab

)
det

(
∂x

∂y

)
dy1 ∧ · · · ∧ dym

=
√
|g|
∣∣∣∣det

(
∂y

∂x

)∣∣∣∣ det

(
∂x

∂y

)
dy1 ∧ · · · ∧ dym

=
√
|g| dy1 ∧ · · · ∧ dym

since the sign of det ∂x∂y is positive.

In a Riemann manifold we can also define a natural isomorphism between Ωp(M) and Ωm−p(M). Let
us define the Levi-Civita symbol

εa1···ap =


+1 if (a1 a2 · · · ap) is an even permutation of (1 2 · · · m)

−1 if (a1 a2 · · · ap) is an odd permutation of (1 2 · · · m)

0 otherwise.
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A.4 Hodge theory

Definition A.4. Let M be an oriented Riemann manifold. The Hodge dual operator is the linear
map ∗ : Ωp(M)→ Ωm−p(M) defined locally on the basis as

∗(dxa1 ∧ · · · ∧ dxap) =

√
|g|

(m− p)!
ε
a1···ap

bp+1···bm dxbp+1 ∧ · · · ∧ dxbm

and then extended by linearity.

As in the case of the volume form, ∗ is well defined. It should be noted that ∗1 is the invariant volume
form:

∗1 = ΩM .

An important property of the Hodge dual operator is that it is a graded involution: if ω ∈ Ωp(M), then

∗ ∗ ω = (−1)p(m−p)ω.

In particular, ∗−1 = (−1)p(m−p)∗. The Hodge dual operator allows us to define the inner product of
p-forms as

〈ω, η〉 =

∫
M

ω ∧ ∗η.

Another tool coming from the ∗ operator is the adjoint derivative.

Definition A.5. LetM be an oriented Riemann manifold, d : Ωp−1(M)→ Ωp(M) the exterior derivative.
The adjoint exterior derivative is the linear map d† : Ωp(M)→ Ωp−1(M) defined by

d† = (−1)mp+p+1 ∗ d ∗ .

Thus, the following diagram commute.

Ωp(M) Ωp−1(M)

Ωm−p(M) Ωm−p+1(M)

d†

∗

(−1)mp+p+1d

∗

Note that the adjoint exterior derivative is nilpotent: d†2 = ∗d ∗2 d∗ = ± ∗ d2∗ = 0. A consequence
of Stokes theorem is that d† is the adjoint operator of d with respect to the inner product introduced
before: if M is a compact orientable Riemann manifold, then

〈dω, η〉 = 〈ω, d†η〉 .

The adjoint exterior derivative allows us to define the Laplacian on p-forms.

Definition A.6. Let M be an oriented Riemann manifold. The Laplace-de Rham operator1 is
defined as the linear operator ∆: Ωp(M)→ Ωp(M),

∆ = −(d+ d†)2 = −dd† − d†d.

A p-form is said to be harmonic if ∆ω = 0. We denote set of harmonic p-forms on M by Harmp(M).

The importance of the harmonic forms is given by the following theorems.

Theorem A.2 (Hodge decomposition theorem). Let (M, g) be a compact orientable Riemann manifold.
Then Ωp(M) decomposes as

Ωp(M) = dΩp−1(M)⊕ d†Ωp+1(M)⊕Harmp(M)

Let us call P : Ωp(M)→ Harmp(M) the projection operator given by the decomposition theorem.

Theorem A.3 (Hodge theorem). Let (M, g) be a compact orientable Riemann manifold. Then the map

P : Hp(M) −→ Harmp(M)

[ω] 7−→ Pω

is an isomorphism.
1A more common definition of the operator is ∆ = (d+d†)2. However, with this definition on Rm the action on functions

is minus the common definition of Laplacian. In this work, to maintain the common notation in analysis, we chose this sign
convention.
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