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1. Cardy-Frobenius algebras

We will start introducing the main algebraic object of these notes, namely the notion of Cardy-Frobenius
algebra, following [9]. In the following, we will denote by K a generic field.

DEFINITION. A Frobenius algebra over K is a finite-dimensional K-vector space A, equipped with the
following structure.

• An algebra structure, i.e. a product µ : A ⊗ A → A with a unit ι : K → A, satisfying the
associativity and the unity conditions.

(A⊗A)⊗A A⊗ (A⊗A)

A⊗A A⊗A

A

∼=

µ⊗id id⊗µ

µ µ

K⊗A A⊗A A⊗K

A

ι⊗id

∼=
µ

id⊗ι

∼=

• A coalgebra structure, i.e. a coproduct ν : A → A ⊗ A with a counit κ : A → K, satisfying the
coassociativity and the counity conditions.

A

A⊗A A⊗A

(A⊗A)⊗A A⊗ (A⊗A)

νν

ν⊗id id⊗ν

∼=

A

K⊗A A⊗A A⊗K

ν
∼=∼=

id⊗κκ⊗id

• The following compatibility condition, called the Frobenius relation, holds.

A⊗A

(A⊗A)⊗A A⊗ (A⊗A)

A

A⊗ (A⊗A) (A⊗A)⊗A

A⊗A

µ

ν⊗id id⊗ν

∼= ∼=

ν

id⊗µ µ⊗id

We will denote it by A = (A,µ, ι,ν, κ). A Frobenius algebra A is called

• symmetric if for all a,b ∈ A,

κ
(
µ(a⊗ b)

)
= κ

(
µ(b⊗ a)

)
.
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• commutative if for all a,b ∈ A,

µ(a⊗ b) = µ(b⊗ a).

A morphism between Frobenius algebras over K, say A and A ′, is a linear map f : A→ A ′ such that the
following diagrams commute.

A⊗A A

A ′ ⊗A ′ A ′

f⊗f

µ

f

µ′

A

K

A ′

f

ι

ι′

A A⊗A

A ′ A ′ ⊗A ′
f

ν

f⊗f

ν′

A

K

A ′

f

κ

κ′

DEFINITION. A Cardy-Frobenius algebra over K is the data (A,C, ζ, ζ∗) of
• a symmetric Frobenius algebra A = (A,µA, ιA,νA, κA) over K,
• a commutative Frobenius algebra C = (C,µC, ιC,νC, κC) over K,
• two algebra morphisms ζ : C → A and ζ∗ : A → C, called zipper and cozipper map respectively,

satisfying the following axioms.
– Knowledge: for all a ∈ A and c ∈ C

µA
(
ζ(c)⊗ a

)
= µA

(
a⊗ ζ(c)

)
– Duality: for all a ∈ A and c ∈ C

κC
(
µC
(
c⊗ ζ∗(a)

))
= κA

(
µA
(
ζ(c)⊗ a

))
In other words, the maps ζ and ζ∗ are dual with respect to the pairngs κA◦µA and κC◦µC.

– Cardy condition: for all a ∈ A,

µA
(
τ
(
νA(a)

))
= ζ
(
ζ∗(a)

)
,

where τ : A⊗A→ A⊗A is the isomorphism a1 ⊗ a2 7→ a2 ⊗ a1.
A morphism of Cardy-Frobenius algebras (A,C, ζ, ζ∗) and (A ′,C ′, ζ ′, ζ ′∗) is a pair (f,g) of morphisms
of Frobenius algebras f : A→ A ′, g : C→ C ′, such that the following diagrams commute.

C C ′

A A ′

g

ζ ζ′

f

A A ′

C C ′

f

ζ∗ ζ′∗

g

EXAMPLE. Consider A = Mat(n,K), the algebra of n × n matrices over K, and C = K, the base field.
For α,γ ∈ K×, set

κA(a) = α tr(a), ζ(x) = diag(x, . . . , x),

κC(x) = γx, ζ∗(a) =
α

γ
tr(a).

The comultiplications and units for A a C are determined by the non-degeneracy of the pairings κ ◦ µ.
Then the knowledge and duality condition hold, while the Cardy condition is equivalent to γ = α2.

DEFINITION. We denote by CF-algK the symmetric monoidal category of Cardy-Frobenius algebras
over K.

2. Open-closed 2d cobordism and TQFTs

Let us introduce another interesting category which generalizes the 2d cobordism category. This will
allow us to establish an equivalence of categories, relating the geometric construction of 2d open-closed
TQFTs to the algebraic side of Cardy-Frobenius algebras.
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DEFINITION. An m-atlas with corners on a set M is a collection { (Uα,ϕα) }α∈I, labelled by an at most
countable set of indices I, such that the following conditions hold.

• The sets Uα coverM.
• For anyα ∈ I,ϕα is a one-to-one map fromUα to an open domain in the spaceRm+ = [0,+∞)m:

ϕα : Uα → ϕα(Uα) ⊂ Rm+ .

• For any pair of intersecting sets Uα ∩ Uβ 6= ∅, the domains ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ)
are open in Rm+ and the one-to-one map

ϕβ ◦ϕ−1
α : ϕα(Uα ∩Uβ)→ ϕβ(Uα ∩Uβ)

is the restriction of a diffeomorphism between open subsets of Rm. These maps are called
transition functions.

A pair (U,ϕ) is called a chart. A subset U ⊂M is defined to be open if its intersections with charts

ϕα(U ∩Uα) ⊂ Rm+
are open for all α ∈ I. This defines a topological structure onM.

DEFINITION. A setM equipped with anm-atlas with corners is called a manifold with corners of dimen-
sionm if it is a Hausdorff, second countable topological space.

DEFINITION. Let M and N be manifolds with corners of dimensions m and n respectively. A map
f : M→ N is said to be smooth if for each pair of charts (U,ϕ) and (V ,ψ) on M and N respectively such
that f(U) ⊂ V , the map

ψ ◦ f ◦ϕ−1 : ϕ(U)→ ψ(V)

is the restriction of a smooth map between open subsets of Rm+ and Rn+.

As pointed out in [8], the notion of manifold with corners is too general. The problem is that the
boundary of a manifold with corners is not always a manifold with corners. Pretending to construct a
cobordism theory, this should be solve somehow. To avoid the issue, as in the 2-disk with one corner,
we have to introduce the concept of manifold with faces.

DEFINITION. For an m-manifold with corners, fix a point p ∈ M and a chart (U,ϕ) containing it.
Define the value c(p) as the number of zero coordinates in ϕ(p) ∈ Rm+ . Then a connected face of M is
the closure of a component of {p ∈M | c(p) = 1 }. A face is a free union of pairwise disjoint connected
faces.
An m-manifold with faces M is a m-manifold with corners such that each p ∈ M is contained in c(p)
different connected faces.

Note that with this definition, every face of a manifold with faces is a manifold with faces as well.

DEFINITION. A rooted m-manifold (M,∂0M,∂1M) is an m-manifold with faces M with a specified pair
(∂0M,∂1M) of faces ofM such that the following two conditions hold.

• ∂0M ∪ ∂1M = ∂M, where ∂M is the boundary ofM as a topological manifold.
• ∂0M ∩ ∂1M is a face of both ∂0M and ∂1M.

The face ∂0Mwill be called the root.

DEFINITION. A diffeomorphism f : M → N between two rooted manifolds is a diffeomorphism of the
underlying manifolds with corners such that f(∂iM) = ∂iN for i = 0, 1.

The diagram below shows a typical rooted 2-manifoldsM and its faces decomposition (the root ∂0M in
red, ∂1M in blue).

M

∂0M

∂1M
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DEFINITION. The category of 2d open-closed cobordisms OC-Cob2 is defined as follows.
• Objects. Its objects are finite disjoint union of labelled, compact, oriented, connected 1-manifolds

with boundary. Specifically, denote by

I = [−1, 1]× { 0 } ⊂ R2, S1 =
{
(x,y) ∈ R2

∣∣ x2 + y2 = 1
}

,

where both manifolds have the standard orientation. For k ∈ N0, set

Ik =
(
3(k− 1), 0

)
+ I, S1

k =
(
3(k− 1), 0

)
+ S1.

Then the objects of OC-Cob2 are elements ε = (ε1, . . . , εn) ∈ { 0, 1 }n, which corresponds to

ε =

( ⊔
k s.t. εk=0

Ik

)
t

( ⊔
k s.t. εk=1

S1
k

)
.

Note that (0) = I and (1) = S1.
• Morphisms. If ε, δ are two objects, the morphisms ε → δ are equivalence classes of compact,

oriented, rooted 2-manifolds (Σ,∂0Σ,∂1Σ), together with an orientation preserving diffeomor-
phism

φ : ∂0Σ→ ε∗ t δ.

Here ε∗ indicates reversal of orientation. In the following, we will denote by ∂−0 Σ and ∂+0 Σ
the boundary components corresponding to ε and δ respectively and we will call them source
and target. We say that (Σ,∂0Σ,∂1Σ,φ) and (Σ ′,∂0Σ

′,∂1Σ
′,φ ′) are equivalent if there exists an

orientation-preserving diffeomorphism f : Σ→ Σ ′ of rooted 2-manifolds, such that the follow-
ing diagram is commutative.

∂0Σ ∂0Σ
′

ε∗ t δ

f|∂0Σ

φ φ′

To each boundary component is given the labelling induced by its diffeomorphic image. Mor-
phisms in this category will be called open-closed cobordisms.

• Composition. Composition of morphisms consists of gluing correspondingly labelled bound-
aries in an orientation-preserving manner. Specifically, if ε1, ε2, ε3 are three objects and
[Σ] : ε1 → ε2, [Σ ′] : ε2 → ε3 are morphisms, we have the diffeomorphisms

φ : ∂+0 Σ→ ε2, φ ′ : ∂−0 Σ
′ → ε∗2 .

Form a rooted 2-manifoldΣφ∪φ′Σ ′ by gluing together ∂+0 Σ and ∂−0 Σ
′ such that the parametriza-

tions match. The resulting equivalence class of Σφ ∪φ′ Σ ′ on the choice of representatives Σ
and Σ ′. This allows the definition of the composition of morphisms [Σ ′] ◦ [Σ] = [Σφ tφ′ Σ ′].

• Symmetric monoidal structure. The disjoint union induces a symmetric monoidal structure on
OC-Cob2, for which the empty disjoint union is the unit object.

In the following, the source boundaries are drawn on the left, and the target ones on the right. The
labelling goes from up to down. Further, representatives of morphisms in OC-Cob2 will be simply
called surfaces. Examples of morphisms in OC-Cob2 are depicted below.

: (0, 0)→ (0), : (1)→ (1, 1), : (1)→ (0)

: (1, 0, 0, 1, 1)→ (1, 0, 1)
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FIGURE 1. Elementary generators for representative of morphisms in OC-Cob2.

Let us describe now the structure of OC-Cob2. The idea is to show that every 2d open-closed cobordism
is generated by a set of generators, corresponding to the identities, (co)multiplications, (co)units and the
(co)zipper, and relations, corresponding to the Cardy-Frobenius axioms. Specifically,

THEOREM 1 ([9]). The objects in OC-Cob2 are generated by the interval and circle. The morphisms are
generated by gluing copies of the twelve elementary surfaces in Fig. 1, subject to the sets of seventeen
elementary relations of Fig. 2.

The object decomposition is clear. To prove the morphism decomposition, we proceed in two steps.
Firstly, we prove that Fig. 1 provides the set of generators via Morse theory for surfaces with corners.
Secondly, for the sufficiency of relations, the idea is to show that every representative Σ of a morphism is
equivalent to a normal form NF(Σ). The normal form is defined from the number of negative/positive
boundary components, the genus, the window number and the boundary permutation. Comparing
to the closed case, these last two invariants have to be added to take into account the open sectors.
Showing that a diffeomorphism from Σ to its normal form is obtained by applying a finite sequence of
the above mentioned relations would prove the theorem.

2.1. Generator decomposition via Morse theory. The following generalization of Morse theory to
manifold with corners was firstly introduced by D. Braess in [4].

DEFINITION. Consider anm-manifold with cornersM. For every point p ∈M, define the tangent space
at p as

TpM = { v : C∞(M)→ R | v is linear and v(fg) = v(f)g+ fv(g) ∀f,g ∈ C∞(M) } .
We can define the inwards pointing tangential cone CpM ⊂ TpM as the set of all tangent vectors v ∈ TpM
for which there exists a smooth path γ : [0, ε]→M for some ε > 0 such that γ(0) = p and the one-sided
derivative is:

lim
t→0+

γ(t) − γ(0)
t

= v.

DEFINITION. Consider an m-manifold with corners M and a smooth function f : M → R. A point
p ∈M is called critical if the restriction of dpf to the inward pointing cone is not surjective, i.e.

dpf(CpM) 6= R.

The value f(p) is called a critical value. As dpf is linear, cones are sent to cones. In particular, a critical
point in the boundary is called postive if dpf(CpM) = [0,+∞), negative if dpf(CpM) = (−∞, 0] and null
if dpf(CpM) = { 0 }.
A critical point p ∈M is called non-degenerate if the Hessian Hessp(f) restricted to the kernel of dpf has
full rank:

det Hessp(f)
∣∣
kerdpf

6= 0.

A function f such that all critical points are non-degenerate is called a Morse function.
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∼= ∼=

∼= ∼=

(a)

∼= ∼= ∼= ∼=

∼= ∼= ∼= ∼=

(u)

∼= ∼= ∼= ∼= (F)

∼= (c) ∼= (s)

∼= ∼= (z)

∼= (k) ∼= (∗)

∼= (C)

FIGURE 2. Elementary relations for representative of morphisms in OC-Cob2.

DEFINITION. Let Σ be a representative of an open-closed cobordism ε→ δ. A special Morse function for
Σ is a Morse function f : Σ→ R satisfying the following conditions.

• It is normalized such that f(Σ) ⊂ [0, 1].
• It maps the source to 0 and the target to 1: f(p) = 0 if and only if p ∈ ∂−0 Σ and f(p) = 1 if and

only if p ∈ ∂+0 Σ.
• Neither ∂−0 Σ nor ∂+0 Σ contain critical points.
• The critical values of f are distinct.

By usual density techniques, it can be shown that every rooted surface admits a special Morse function.
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THEOREM 2. Let Σ be a representative of a connected open-closed cobordism ε → δ, f : Σ → R a
special Morse function with precisely one critical point. Then M is equivalent to one of the following
cobordisms

or the compositions

SKETCH OF THE PROOF. We have two cases: either the critical point p ∈ Σ \ ∂Σ or p ∈ ∂Σ. In the
first case, we can apply the ordinary Morse lemma: there exists a chart φ = (x1, x2) : U→ R2 such that

f(p) = −

k∑
i=1

x2
i(p) +

2∑
i=k+1

x2
i(p).

Here k is the Morse index of f at p. Then we have three cases.
(1) k = 2. Then Σ is diffeomorphic to the closed counit surface.
(2) k = 1. If the cobordism is close-to-close, then Σ is diffeomorphic to the multiplication or

comultiplication. If the boundary has open components, a case-by-case analysis shows that
the only other possibilities are those of the second diagram of the statement.
One of the possible cases with the diffeomorphism to put it one of the forms of the statement
is shown below.

p ∼=

The surface on the left is drawn in such a way that f is the height function with respect to the
horizontal axis of the drawing plane.

(3) k = 0. Then Σ is diffeomorphic to the closed unit surface.
Let us consider now the case p ∈ ∂Σ. Then p ∈ ∂1Σ and it is not a corner, that is p is an internal critical
point for the Morse function f|∂1Σ. The index can be k ′ = 0, 1. For k ′ = 1 we have three possibilities.

(i) If p is a positive critical point, then Σ is diffeomorphic to the open counit.
(ii) If it is negative, then it is either the cozipper or the open multiplication.

(iii) If it is a null critical point, then non-degeneracy implies that Hessp(f) is non-degenerate. Let
k ′′ be number of negative eigenvalues of the Hessian. As k ′ = 1, it cannot be k ′′ = 0. So we
have two cases: either k ′′ = 2, and we are in the same situation as in (i), or k ′′ = 1, and we are
in (ii).

The case k ′ = 0 is completely symmetric to the former one, leading to the open unit, the zipper and the
open multiplication. �

COROLLARY. Let [Σ] : ε → δ be any morphism. Then [Σ] = [Σk] ◦ · · · ◦ [Σ1], where [Σi] are elementary
morphisms in Fig. 1.

2.2. Sufficiency of relations via normal form.

DEFINITION. Consider a morphism [Σ] : ε→ δ. We have the following invariants.
• Genus. Define g[Σ] ∈ N0 as the genus of the underlying surface.
• Window number. Define w[Σ] ∈ N0 as the number of boundary components of the face ∂1Σ

which are diffeomorphic to a circle.
• Boundary permutation. Let k be the number of boundary components of the root ∂0Σwhich are

diffeomorphic to an interval, labelled from the source to the target in the natural way. Define
β[Σ] ∈ Sk as follows. Consider a connected component X of ∂Σ that contain a corner. The
orientation of Σ induces an orientation on X. Then it is defined a cycle (i1 · · · il), where the
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ij ∈ { 1, . . . ,k } are the number of components of ∂0Σ contained in X. Then β[Σ] is the product
of these cycles for all such components.

Note that all invariants are well-defines, i.e. they do not depend on the choice of a representative.

Consider for instance the morphism below.

2

1 3

Then g = 1, w = 3 and β = (1 2) ∈ S3. The “windows” are depicted in red.

This definition allow us to define the normal form associated an open-to-closed cobordism, i.e. a cobor-
dism whose source is a disjoint union of intervals and the target is a disjoint union of circles. Before
doing that, let us point out that, fixing an object ε and a permutation σ ∈ S|ε|, we can associate to them
a morphism [σ] : ε→ σ(ε) in the natural way. An example is shown below.

ε = (0, 1, 0)

σ = (1 2) ∈ S3

DEFINITION. Consider a representative Σ̄ of a connected open-to-closed morphism 0 → 1 with genus
g, window number w and boundary permutation β. Write the boundary permutation as a product of
disjoint cycles β = β1 · · ·βr, with βi of length `i. The normal form of Σ̄ is defined as the composition

nf(Σ̄) = E|1| ◦Dg ◦ Cw ◦ Br ◦
( r⊔
i=1

A`i

)
◦ σ

of the following surfaces.
• A` consists of `− 1 open multiplications and a cozipper.

· · ·
A` =

Cycles of length one are represented by a single cozipper. In the case r = 0, the free union has
to be replaced by the empty set.

• If r > 1, Br consists of r− 1 closed multiplications.

· · ·
Br =

If r = 0, set B0 = .
• Define Cw as

· · ·Cw =

w times

if w > 0, the empty set otherwise.
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• Similarly,

· · ·Dg =

g times

if g > 0, the empty set otherwise.
• The surface En is given by n− 1 closed comultiplications

· · ·

En =

if n > 0 and the closed unit E0 = otherwise.
• Finally, the surface σ represents the following permutation. Let γ be the boundary permutation

of the composition

E|1| ◦Dg ◦ Cw ◦ Br ◦
( r⊔
i=1

A`i

)
.

Note that β and γ have the same cycle structure, since it is determined by the partition of
|0| =

∑r
i=1 `i. Then there exists a permutation σ such that

β = σ−1γσ.

The surface σ associated to 0 and the permutation σ is the missing term in the composition
defining nf(Σ̄).

The main result of the section is to prove that the normal form of a surface is equivalent to the surface
itself, providing an inductive proof which constructs a finite sequence of diffeomorphisms that puts
an arbitrary open-closed cobordism into the normal form using only the elementary relations. Hence,
we provide a constructive proof that the relations are sufficient to completely describe the category
OC-Cob2.

THEOREM 3. Let Σ̄ be a representative of a connected morphism ε → δ. Then Σ̄ is equivalent to
its normal form nf(Σ̄) and the diffeomorphism is obtained by applying a finite number of times the
elementary relations of Fig. 2.

IDEA OF THE PROOF. The proof proceeds case-by-case, considering the possible configurations of
the elementary generators and eliminating the configurations which do not compare in the normal form
by applying the elementary relations. As an example, the open unit does not appear in the normal form.
However, thanks to (z.2), we find

∼=

A complete proof can be found in [9]. �

Let us show now how to define the normal form for a general morphism. The idea is to move from a
general cobordism to an open-to-closed one via permutations. Before proceeding with the statements,
let us see an example.

Consider [Σ] : (0, 1, 0)→ (1, 0), which can be depicted schematically as below.

Σ
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We can permute now the source and target boundaries, in such a way that all the components dif-
feomorphic to an interval are moved to the top. Then we can compose with pairings (composition of
multiplication and counit) and copairings (composition of comultiplication and unit), in order to obtain
an open-to-closed morphism.

σ Σ τ

LEMMA. Consider a representative Σ of a connected morphism ε → δ. Let 0ε = (0, . . . , 0), 1ε =

(1, . . . , 1) such that 0ε t 1ε is a permutation of ε:

ε = σ
(
0ε t 1ε

)
.

Similarly for δ: consider 0δ = (0, . . . , 0), 1δ = (1, . . . , 1) such that 0δ t 1δ is a permutation of δ:

δ = τ−1(0δ t 1δ.
)
.

Then we define Λ(Σ) to be the open-to-closed surface obtained from Σ by precomposing with σ, post-
composing with τ, gluing closed copairings on each circle in 1ε, and gluing open pairings on each
interval in 0δ. The class of the resulting open-to-closed surface do not depend on the class of Σ.

We can also construct a sort of inverse map, but auxiliary structure to the open-to-closed morphism has
to be specified, that is a decomposition of source and target boundaries and permutations of the first
and second parts of these decomposition. For example, for [Σ̄] : (0, 0, 0)→ (1, 1) with

(0, 0, 0) = (0) t (0, 0) σ̄ = (2 3) ∈ S3

(1, 1) = (1) t (1) τ̄ = (1 2) ∈ S2

then we can construct a morphism in the following way.

σ̄

Σ̄

τ̄

LEMMA. Consider a representative Σ̄ of a connected open-to-closed morphism 0→ 1 with the data of
• two decompositions of its source and target into free unions: 0 = δ0 t ε0 and 1 = δ1 t ε1,
• two elements of the symmetric groups σ̄ ∈ S|ε0|+|ε1| and τ̄ ∈ S|δ0|+|δ1|.

We define Λ̄(Σ̄) to be the surface from σ̄−1(ε0 t ε1) to τ̄(δ0 t δ1) given by gluing open copairings to
the intervals in δ0 and closed pairings to the circles in δ1. The result of this gluing is then precomposed
with σ̄ and postcomposed with τ̄. The class of the resulting open-closed morphism do not depend on
the class of Σ̄.

Note that the element Λ(Σ) comes with the above mentioned data. In particular, using the notation of
the previous lemmata:

• the decomposition of its source and target into a free unions: 0 = 0δ t 0ε and 1 = 1δ t 1ε,
• the two permutations σ̄ = σ−1 and τ̄ = τ−1.
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Further, it is clear that [Λ̄(Λ(Σ))] = [Σ]. Combining this with the normal form for open-to-closed mor-
phisms, we obtain the following result.

COROLLARY. Consider a representative Σ of a connected morphism : ε→ δ. Define its normal form as

NF(Σ) = Λ̄
(
nf(Λ(Σ))

)
.

For disconnected surfaces, define it componentwise. Then the class of NF(Σ) do not depend on the class
of Σ and in particular [

NF(Σ)
]
= [Σ].

It is clear now that the elements in Fig. 1 generates OC-Cob2, as the normal form for open-to-closed
morphisms and the permutations are obtained by gluing these pieces, and the theorem for normal form
of open-to-closed cobordism proves the sufficiency of the relations in Fig. 2.

3. Open-closed TQFTs and Cardy-Frobenius algebras

Let us denote by VectK the category of finite-dimensional vector spaces over K. The tensor product
induces a symmetric monoidal structure on VectK, for which K is the unit object.

Following the axiomatization due to M.F. Atiyah [2], we give the

DEFINITION. A two-dimensional open-closed topological quantum filed theory (2d open-closed TQFT) over
K is a symmetric monoidal functor Z : OC-Cob2 → VectK.

An important idea in the mathematical approach to quantum field theories is that manifolds and their
gluings give rise to algebraic structures, where algebraic relations express diffeomorphisms between
manifolds. The following theorem states the precise correspondence. The result corresponding to the
closed sector has been folklore knowledge, and it seems to have been written in detail for the first time
in [1].

THEOREM 4 ([9]). A 2d open-closed TQFT Z determines a Cardy-Frobenius algebra structure on the
pair (A,C), given by Z(I) = A and Z(S1) = C, via the formulas

Z
( )

= µA : A⊗A→ A

Z
( )

= ιA : K→ A

Z
( )

= νA : A→ A⊗A

Z
( )

= κA : A→ K

Z
( )

= µC : C⊗ C→ C

Z
( )

= ιC : K→ C

Z
( )

= νC : C→ C⊗ C

Z
( )

= κC : C→ K

Z
( )

= ζ : C→ A

Z
( )

= ζ∗ : A→ C

Conversely, for any Cardy-Frobenius algebra, these formulas determine a unique 2d open-closed TQFT.

PROOF. Consider a 2d open-closed TQFT Z. We have to check that A = Z(I) form a symmetric
Frobenius algebra, C = Z(S1) form a commutative Frobenius algebra and the knowledge, duality and
Cardy conditions hold. These relations are all shown in Fig. 2.
It is clear that µA and µC are associative. The same holds for the coassociativity of νA and νC. The
(co)associativity laws are given by the diffeomorphisms (a) in Fig. 2. Similarly, ιA and ιC are units,
while κA and κC are counits by (u). The Frobenius relation is given by (F). The commutative of µC
comes from the fact that we always find an automorphism of a pair of pants which exchanges the
two boundaries one one side, that is (c). The same does not hold for µA, though it is symmetric, see (s).
Furthermore, the map ζ is an algebra morphism, as shown in (z), and the knowledge, duality and Cardy
conditions hold: (k), (∗) and (C). As a consequence, we have a Cardy-Frobenius algebra structure.
The converse follows from the classification theorem of 2d open-closed cobordisms, namely Theorem 1:
the value Z(ε) is determined by the values on I and S1, while the morphism are determine by the values
on the generators, subjected to the relations. These are precisely the Cardy-Frobenius axioms. �
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We can also say something more about the above result. In particular, 2d open-closed TQFTs form a
symmetric monoidal category, and the above result extends to an equivalence of categories.

Let us introduce the following notation. Consider a 2d open-closed TQFT Z and setA = Z(I),C = Z(S1).
For ε ∈ { 0, 1 }n, set (A,C)⊗ε for the tensor product of A’s and C’s, with order given by the components
of ε. Here 0 correspond to A and 1 corresponds to C.

DEFINITION. A morphism (f,g) : Z→ Z ′ between 2d open-closed TQFTs over K is a collection of maps

(f,g)⊗ε : (A,C)⊗ε → (A ′,C ′)⊗ε

such that the following diagrams commute for every morphism [Σ] : ε→ δ.

(A,C)⊗ε (A ′,C ′)⊗ε

(A,C)⊗δ (A ′,C ′)⊗δ

(f,g)⊗ε

Z[Σ] Z′[Σ]

(f,g)⊗δ

We can also introduce the tensor product of 2d open-closed TQFTs over K, say Z and Z ′, as

(Z⊗ Z ′)(ε) = Z(ε)⊗ Z ′(ε).

Thanks to the isomorphism (A,C)⊗ε ⊗ (A ′,C ′)⊗ε ∼= (A⊗A ′,C⊗ C ′)⊗ε, it makes sense to define

(Z⊗ Z ′)[Σ] = Z[Σ]⊗ Z ′[Σ].

With these notion of morphisms and tensor product, 2d open-closed TQFTs over K form a symmetric
monoidal category, denoted by 2d OC-TQFTK.

THEOREM 5. There is an equivalence of categories F : CF-algK → 2d OC-TQFTK.

PROOF. We have already seen the correspondence of objects. For the morphisms correspondence,
it is clear that given a morphism of 2d open-closed TQFTs (f,g) : Z→ Z ′, then

(f,g)⊗(0) : A→ A ′, (f,g)⊗(1) : C→ C ′

is a morphism of Cardy-Frobenius algebras. On the other hand, from a morphism of Cardy-Frobenius
algebras (f,g) : (A,C)→ (A ′,C ′) we can construct all morphisms (f,g)⊗ε via tensor products.

Further, it is clear that those assignments respect the tensor product. �

REMARK. The above results can be generalized in various directions. On one hand, the original work
by A. Lauda and H. Pfeiffer presented the results for 2d open-closed TQFTs with values in a symmetric
monoidal category C , i.e. a symmetric monoidal functor

Z : OC-Cob2 → C .

The algebraic counterpart is played by Cardy-Frobenius algebras over C . In the same article, they
presented a result for colored TQFTs, in which the boundary ∂1Σ can be colored in different ways and
all morphisms respect the coloring.

On the other hand one can explore the notion of deformations of Cardy-Frobenius algebras in the sense
of [6]. This has be done by S.M. Natanzon in [10], with the concepts of Cardy-Frobenius manifold and
extended cohomological field theory.

A classification has been carried out in the semisimple supersymmetric case. In particular, every
semisimple super Cardy-Frobenius algebra is the direct sum of super Cardy-Frobenius algebras of three
simple types. More precisely:

DEFINITION. A super Cardy-Frobenius algebra (A,C, ζ, ζ∗) is called semisimple ifA andC are semisim-
ple in the category of Z2−graded algebras.

THEOREM 6 ([7]). Let (A,C, ζ, ζ∗) be a semisimple super Cardy-Frobenius algebra over an algebraically
closed field K. Then it is the direct sum of the following elementary algebras.

• A = 0 and C = K, with κC(x) = αx for some α ∈ K×.
12



• A = Mat(n|m,K) and C = K, with

κC(a) = α str(a) ζ(x) = diag(x, . . . , x)

κA(x) = α
2x ζ∗(a) =

1
α

str(a).

for some α ∈ K×.
• A = Mat(n,K)[ξ], with ξ2 = 1 and grading given by

A = Mat(n,K)︸ ︷︷ ︸
=A0

⊕Mat(n,K) · ξ︸ ︷︷ ︸
=A1

,

and C = K, with

κA(a+ bξ) = α tr(b) ζ(x) = diag(x, . . . , x)

κC(x) =
α2

2
x ζ∗(a+ bξ) =

2
α

tr(b).

for some α ∈ K×.

4. Matrix factorization

A geometric example of Cardy-Frobenius structure comes from matrix factorization. This structure
arises in the context of Homological Mirror Symmetry, as the B-category associated to a Landau-Ginzburg
model [3]. In the following, Kwill be an algebraically closed field.

DEFINITION. Let R be a commutative ring, w ∈ R. we define the category of matrix factorizations on
w, denoted by MF(w), as follows. The objects, called matrix factorizations on w, are periodic complexes

M0 d0
M−−−→M1 d1

M−−−→M0

where M0, M1 are free R-modules, d0
Md

1
M = w · id, d1

Md
0
M = w · id. Alternatively, we can consider the

data

M =M0 ⊕M1, dM =

(
0 d1

M

d0
M 0

)
s.t. d2

M = w · id .

A morphism of matrix factorizationsM,N onw is a pair of R-linear morphisms fi : Mi → Ni, such that
the following diagram commute.

M0 M1 M0

N0 N1 N0

d0
M

f0

d1
M

f1 f0

d0
N d1

N

Now, a homotopy between two matrix factorizations on w, say f,g : M → N, is a pair of R-linear maps
hi : Mi → Ni−1, where the indices are intended mod 2, such that the following diagram commute.

M0 M1 M0

N0 N1 N0

d0
M d1

M

h1 h0

d0
N d1

N

Here the vertical arrows are the maps fi − gi. Null-homotopic morphisms constitute an ideal in the
category MF(w). Let HMF(w) be the quotient category by this ideal. It has the same objects as MF(w),
but fewer morphisms. More precisely:

DEFINITION. The homotopy matrix factorization category associated to w ∈ R is the category HMF(w)
whose objects are matrix factorizations on w, and the morphisms are

MorHMF(w)(M,N) = MorMF(w)(M,N)�{null-homotopic morphisms }.
13



REMARK. Note that ifM,N are matrix factorizations, then HomR(M,N) is a Z2 cochain complex, with

HomR(M,N) =
(
HomR(M

0,N0)⊕HomR(M
1,N1)

)︸ ︷︷ ︸
Homev

R (M,N)

⊕
(
HomR(M

0,N1)⊕HomR(M
0,N1)

)︸ ︷︷ ︸
Homodd

R (M,N)

and differential
dM,Nf = dN ◦ f− (−1)|f|f ◦ dM.

In particular, it makes sense to speak about the cohomology of (HomR(M,N),dM,N) and we have

MorHMF(w)(M,N) = H0(HomR(M,N),dM,N
)
.

EXAMPLE. Consider R = K[x], w = xn and for every k ∈ { 1, . . . ,n− 1 }, the matrix factorization

Mk = K[x]⊕K[x], dk =

(
0 xn−k

xk 0

)
.

It is clear that d2
k = xn · id for every k. Let us compute now EndMF(xn)(Mk). Fix an even R-linear

morphisms f : Mk →Mk, that is f = diag(p,q) with p,q ∈ K[x]. Imposing the commutativity with the
differential, we find

0 = dk ◦ f− f ◦ dk =

(
0 −xk(p− q)

xn−k(p− q) 0

)
,

which implies p = q. In particular, we have the algebra isomorphism

EndMF(xn)(Mk) ∼= K[x]⊕K[x].
let us compute now EndHMF(xn)(Mk). Consider a null-homotopic morphism f ∈ EndMF(xn)(Mk). That
is, there exists an odd R-linear map

h =

(
0 β

α 0

)
with α,β ∈ K[x], such that f = dk ◦ h+ h ◦ dk. In particular, setting f = diag(p,p), we find(

p 0
0 p

)
=

(
xn−kα+ xkβ 0

0 xn−kα+ xkβ

)
.

As a consequence, p ∈ (xk, xn−k). In particular, we have the algebra isomorphism

EndHMF(xn)(Mk) ∼= K[x]�(xk, xn−k)⊕
K[x]�(xk, xn−k).

Consider now a matrix factorization (M,dM) on a polynomialw ∈ K[x1, . . . , xn]. We can define a super
Cardy-Frobenius algebra structure as follows. Let Iw = (∂1w, . . . ,∂nw) be the Jacobian ideal. Set

A = EndHMF(w)(M) C = K[x1, . . . , xn]�Iw

κA[a] = ResK[x]/K

[
str(a · ∂1dM · · ·∂ndM)dx

∂1w, . . . ,∂nw

]
κC[p] = ResK[x]/K

[
pdx

∂1w, . . . ,∂nw

]
ζ[p] =

[
p · idM

]
ζ∗[a] = (−1)(

n−1
2 ) str

(
a · ∂1dM · · ·∂ndM

)
mod IW .

Here the Z2-grading on A is given by

A = EndHMF(w)(M
0)⊕ EndHMF(w)(M

1),

while the grading on the Milnor ring C is trivial (it is purely even). Further, after a choice of basis,
we can express dM as a matrix with entries in K[x1, . . . , xn], so that it is clear what ∂idM means. In
particular, it can be shown that the supertrace of the morphism a · ∂1dM · · ·∂ndM do not depend on
the homotopy class of a, so that κA and ζ∗ are well-defined. Further, by differentiating d2

M = w · id,
we obtain that ∂iw · id is null-homotopic, so that ζ is well-defined too. Finally, from the definition of
residue it can be shown that if p ∈ Iw, then

ResK[x]/K

[
pdx

∂1w, . . . ,∂nw

]
= 0,

so that also κC is well-defined.

THEOREM 7 ([5, 11]). The above A,C, κA, κC, ζ, ζ∗ form a super Cardy-Frobenius algebra.
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