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Morse Theory

Morse function

Let M be a compact orientable smooth m-manifold, f : M → R smooth. A
point p ∈ M is called critical for f if dfp : TpM → R is the null map.

M R
f

Example: height function on the torus
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Morse Theory

Morse function

Fundamental idea
Critical points of f determine the topology of M

A smooth function f : M → R is called a Morse function if for every critical
point p the Hessian d2fp is non-degenerate. Define the Morse index in p as

µp = #negative eigenvalues of d2fp

and the value

Mk = #critical points of Morse index k .
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Morse Theory

Example: torus’ height

R
f

p

µp = 2

q
µq = 1

r
µr = 1

s

µs = 0

M0 = 1 M1 = 2 M2 = 1
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Morse Theory

Fundamental theorem

Principal result
From the sublevel sets

Mα = { p ∈ M | f (p) ≤ α }

is possible to reconstruct the CW-complex structure of M

Fundamental theorem of Morse Theory

Let α < β and suppose that {α ≤ f ≤ β } does not contain critical
point of f . Then Mα is a deformation retract of Mβ .
Let p be a critical point with f (p) = α and ε > 0 such that f does
not have critical points in (α− ε, α + ε) rather than p. Then Mα+ε is
homotopically equivalent to Mα−ε ∪ eµp .
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Morse Theory

Example: torus’ height

Let α < β and suppose that {α ≤ f ≤ β } does not contain critical
point of f . Then Mα is a deformation retract of Mβ .

Mβ

∼= Mα
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Morse Theory

Example: torus’ height

Let p be a critical point with f (p) = α and ε > 0 such that f does
not have critical points in (α− ε, α + ε) rather than p. Then Mα+ε is
homotopically equivalent to Mα−ε ∪ eµp .

pMα+ε ∼=
Mα−ε

eµp
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Morse Theory

Morse inequalities

Let βk be the kth Betti number of M.

Weak Morse inequalities:
βk ≤ Mk

Strong Morse inequalities: for every n = 0, . . . ,m

n∑
k=0

(−1)n−kβk ≤
n∑

k=0

(−1)n−kMk

Morse index theorem:

χ(M) =
m∑

k=0

(−1)kMk
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Morse Theory

Example: sphere’s height

R
f

N
µN = 2

S

µS = 0

M0 = 1 = β0

M1 = 0 = β1

M2 = 1 = β2

A. Giacchetto November 25, 2016 8 / 27



Morse Theory

Example: horned sphere’s height

R
fp

µp = 2

q

µq = 2

r
µr = 1

s

µs = 0

M0 = 1 = β0

M1 = 1 > β1

M2 = 2 > β2

−1 = β1 − β0 < M1 −M0 = 0

χ(S2) = M0 −M1 + M2
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Quantum Mechanics on Riemannian varieties Quantum Mechanics and Supersymmetry

Fundamental postulates

In Quantum Mechanics the state of a particle is described by a
complex-valued function of space-time variable: ψ(x , t). The following
conditions holds.

ψ(·, t) ∈ L2(R3), with ‖ψ(·, t)‖2 = 1, so that |ψ(·, t)|2 can be
interpreted as a probability distribution of the particle position in the
frozen time t

ψ solves the Schrödinger equation

i~ ∂tψ =

(
− ~2

2m
∆ + V

)
ψ = Hψ

Every observable (as the Hamiltonian H) is a linear self-adjoint
operator of L2(R3). The possible outcomes of a measurement are
precisely the eigenvalues of the given observable.
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Quantum Mechanics on Riemannian varieties Quantum Mechanics and Supersymmetry

Generalisations

We can generalize the theory on a general Hilbert H space as follows.

The states ψ(t) are time-dependent elements of the Hilbert space H,
with unitary norm
ψ(t) evolves with the Schrödinger equation

i~ ∂tψ = Hψ, H : H → H linear self-adjoint operator

Every observable is a linear self-adjoint operator of H
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Quantum Mechanics on Riemannian varieties Quantum Mechanics and Supersymmetry

Supersymmetry

A Quantum Mechanical system can have a further symmetry between
bosons and fermions, called supersymmetry. In these theories every fermion
has a bosonic counterpart, called superpartner.

The supersymmetry is described by two operators Q, Q† obeying the
algebra

[H,Q] = [H,Q†] = 0, {Q,Q†} = 2H, Q2 = (Q†)2 = 0.

In these theories, it is interesting to study the kernel of the Hamiltonian.

Supersymmetry broken

Hψ = 0
exists a non-trivial solution =⇒ supersymmetry unbroken

only trivial solutions =⇒ supersymmetry broken
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Quantum Mechanics on Riemannian varieties Hodge Theory

Hilbert space structure of Ω•(M)

Let (M, g) be an orientable compact smooth Riemannian m-manifold with
atlas {(U, x i )}. Define the Hodge star operator ∗ : Ωk(M)→ Ωm−k(M) as

∗ω =

√
|g |

k!(m − k)!
ωj1···jk ε

j1···jk
jk+1···jn dx

jk+1 ∧ · · · ∧ dx jm

This allows the definition of a scalar product on Ωk(M) as

〈ω, η〉 =

∫
M
ω ∧ ∗η

which makes (the completition of) Ω•(M) a Hilbert space. We can define
the adjoint of the exterior derivative d : Ωk(M)→ Ωk+1(M):

〈dω, η〉 = 〈ω, d†η〉 =⇒ d† = (−1)mk+1 ∗ d∗
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Quantum Mechanics on Riemannian varieties Hodge Theory

Hodge theorem

We can construct the Laplace-de Rham operator

∆ = −(d + d†)2 = −(dd† + d†d),

which is a self-adjoint linear, negative definite operator on Ωk(M).

A k-form ω is called harmonic if ∆ω = 0.

Hodge theorem

Every de Rahm cohomology class [ω] ∈ Hk
dR(M) has a unique harmonic

representative. In particular,

βk = dim ker
(
∆: Ωk(M)→ Ωk(M)

)
.
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SUSY and Morse Theory

Supersymmetric Quantum Mechanics on Ω•(M)

We have the SUSY QM on Ω•(M) given by the Hamiltonian

H0 = − ~2

2m
∆ Q =

~√
m
d

The Hilbert space can be divided into bosons and fermions

Ωbos(M) =
⊕
k even

Ωk(M)

Ωferm(M) =
⊕
k odd

Ωk(M)

In particular, 1-forms as dx i are fermions.
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SUSY and Morse Theory

Witten deformation

Take a Morse function f : M → R. Main idea: Witten deformation. Define

ds = e−fsd efs = d + s εdf

The Hamiltonian becomes (with ~ = 1, m = 1/2)

Hs = −∆ + s
(
L∇f + L†∇f

)
+ s2 ‖df ‖2

= −∆ + s
∂2f

∂x j∂x l
[(aj)†, al ] + s2 ∂j f ∂j f ,

where
(aj)† = εdx j al = i∂l

are fermionic creation and annihilation operator respectively.
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SUSY and Morse Theory Weak Morse inequalities

The theory is still supersymmetric. Our main goal for SUSY reasons is to
understand the solutions of

Hsω = 0.

What we know?
The operator ds determine the same chain complex of d . In particular,

βk = dim ker
(
Hs : Ωk(M)→ Ωk(M)

)
.

For s � 0, the vacua are determined by s2‖df ‖2 = 0, i.e. df = 0: the
critical points of f .

Idea: perturbation theory
Use perturbation theory to determine kerHs around any critical point p.
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SUSY and Morse Theory Weak Morse inequalities

A picture of the potential as s increase.
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SUSY and Morse Theory Weak Morse inequalities

With a good choice of coordinates around p,

Hs = s
m∑
i=1

(
− ∂2

∂x i∂x i
+ (λix i )2 + λi

[
(ai )†, ai

])
+ O

(√
s
)
,

where λi are the eigenvalues of the Hessian in p. The leading-order
Hamiltonian is separated into Hamiltonians of the form

H ′ = − ∂2

∂x2 + λ2x2 + λ
[
εdx , i∂

]
,

which is the sum of an harmonic oscillator Hamiltonian and the operator
λ
[
εdx , i∂

]
.
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SUSY and Morse Theory Weak Morse inequalities

The eigenvalues at leading order are

s
m∑
i=1

(
|λi |(1 + 2N(i))± λi

)
, N(i) = 0, 1, 2, . . .

We have just one possibility to get zero: N(i) = 0 and +1 if λi < 0, −1 if
λi > 0. The choice corresponds to a k-form if and only if µp = k .

Thus, the leading order Hamiltonian acting on Ωk(M) has kernel dimension
equal to Mk .

Since Hs do not necessarily annihilate such forms (it is just its leading
coefficient that vanishes), we have established the weak Morse inequalities

βk ≤ Mk .
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SUSY and Morse Theory Morse-Smale-Witten cochain complex

We have seen that

perturbative analysis =⇒ weak Morse inequalities.

To learn something new we must perform a calculation which is sensitive to
the existence on M of more than one critical point: we must allow for the
possibility of “tunnelling” from one critical point to another. This
non-perturbative effect can be calculated via semiclassical trajectories
called instantons.

p q

r

s
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SUSY and Morse Theory Morse-Smale-Witten cochain complex

Expansion of the perturbative ground states

We already found a perturbative vacua ωp for every critical point p, which
is a µp-form. In the full theory, we expect that

Qωp =
∑

q critical pt

〈ωq,Qωp〉ωq +
expansion in

higher energetic states

The expansion coefficients (i.e. the tunnelling transition amplitudes from p
to q) can be expressed as a path integral.
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SUSY and Morse Theory Morse-Smale-Witten cochain complex

Tunnelling amplitudes

Computing the path integral, we get

〈ωq,Qωp〉 = e−s
(
f (q)−f (p)

) ∑
γ

from p to q

nγ

where
q is a critical point such that µq = µp + 1
γ : R→ M are the steepest ascent paths:{

γ̇ i = s g ij ∂f
∂x j

γ(−∞) = p, γ(+∞) = q

nγ = ±1 is determined by means the orientation of M and the and by
the steepest ascent γ
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SUSY and Morse Theory Morse-Smale-Witten cochain complex

Action of Q

Properly normalizing the perturbative vacua, we find the action of Q on
every ωp

Q action on perturbative vacua

Qωp =
∑

µq=µp+1

∑
γ

from p to q

nγ ωq.

Further, we it can be shown that

Q2 = 0.

These facts suggest the following definition.
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Morse-Smale-Witten cochain complex

Define the graded space of perturbative ground states

C k =
⊕
µp=k

R 〈ωp〉 ,

we find the cochain complex with the coboundary operator given by Q

0 C 0 · · · Cm 0Q Q

The pair (C •,Q) is called the Morse-Smale-Witten cochain complex of f .
From

βk = dim ker
(
Hs : Ωk(M)→ Ωk(M)

)
and the fact that Hω = 0 iff Qω = Q†ω = 0, it can be shown that the
cohomology of (C •,Q) is nothing but the de Rham cohomology of M.
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Example: horned sphere’s height

Rfp

µp = 2

q

µq = 2

r
µr = 1

s

µs = 0

p q

r

s

+1

−1

+1 −1

0 R 〈ωs〉 R 〈ωr 〉 R 〈ωp〉 ⊕ R 〈ωq〉 00 ωp−ωq
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Example: horned sphere’s height

0 R 〈ωs〉 R 〈ωr 〉 R 〈ωp〉 ⊕ R 〈ωq〉 00 ωp−ωq

The cohomology will be

H0((C •,Q)
)

=
R 〈ωs〉

(0)
∼= R

H1((C •,Q)
)

=
(0)

(0)
∼= 0

H2((C •,Q)
)

=
R 〈ωp〉 ⊕ R 〈ωq〉

R 〈ωp − ωq〉
∼= R
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Thank you for the attention
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Euclidean action

The starting point is the Euclidean action associated to the previous model.
In flat space, it is

SE [φ, ψ̄, ψ] =

∫
R
dt

(
1
2
gij φ̇

i φ̇j +
1
2
gij(ψ̄

i ψ̇j − ˙̄ψiψj)+

+ s
∂2f

∂x i∂x j
ψ̄iψj +

1
2
s2g ij ∂f

∂x i
∂f

∂x j

)
where φ ∈ C∞(R,M) represent a boson and ψ, ψ̄ ∈ Γ∞(R, φ∗TM ⊗ C) its
fermionic superpartner.
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Expansion of the perturbative ground states

We already found a perturbative vacua ωp for every critical point p, which
is a µp-form. In the full theory, we expect that

Qωp =
∑

q critical pt

〈ωq,Qωp〉ωq +
expansion in

higher energetic states

The expansion coefficients (i.e. the tunnelling transition amplitudes from p
to q) can be expressed as the path integral

〈ωq,Qωp〉 =
1

f (q)− f (p)

∫
DφDψ̄Dψ ψ̄i ∂f

∂x i
e−SE [φ,ψ̄,ψ].
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Ingredients

To compute ∫
DφDψ̄Dψ ψ̄i ∂f

∂x i
e−SE [φ,ψ̄,ψ]

with the saddle-point method we need:

the minima of the bosonic action
the bosonic and fermion determinants
the zero modes

The answer will be

∑
minima

e−Sb
fermionic determinant’√
bosonic determinant’

(∫
zero modes

) ∣∣∣∣∣
minima
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Instantons

The minima of the bosonic action

Sb[φ] =

∫
R
dt

(
1
2
gij φ̇

i φ̇j +
1
2
s2g ij ∂f

∂x i
∂f

∂x j

)
=

1
2

∫
R
dt

∣∣∣∣φ̇i − s g ij ∂f

∂x j

∣∣∣∣2 + s
(
f (q)− f (p)

)
are given by the steepest ascent paths (instantons)

γ̇ i = s g ij ∂f

∂x j
, γ(−∞) = p, γ(+∞) = q.

First ingredient

e−Sb|minima = e−s
(
f (q)−f (p)

)
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Steepest ascent on the horned sphere

The steepest ascent for the height function on the horned sphere
connecting critical points with relative Morse index ∆µ = 1.

p q

r

s
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Bosonic and fermionic determinants

The second variation of the bosonic action is given by

D−δφi = ˙δφ
i − s g ij ∂2f

∂x j∂xk
δφk .

The fermionic action reads

Sf[ψ̄, ψ] =

∫
R
dt

(
1
2
gij(ψ̄

i ψ̇j − ˙̄ψiψj) + s
∂2f

∂x i∂x j
ψ̄iψj

)
=

∫
R
dt gij ψ̄

iD+ψ
j = −

∫
R
dt gij D−ψ̄iψj

where in general D±χi = χ̇i ± s g ij ∂2f
∂x j∂xk

χk .

Second ingredient

fermionic determinant’√
bosonic determinant’

∣∣∣∣∣
minima

=
det′D−√
det′ |D−|2

∣∣∣∣∣
γ

= ±1
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Zero modes

For the path integral ∫
DφDψ̄Dψ ψ̄i ∂f

∂x i
e−SE [φ,ψ̄,ψ]

to be non-vanishing, the number of ψ̄ zero modes (solutions of D−ψ̄ = 0)
must be larger than the number of ψ zero modes (solutions of D+ψ = 0)
by one, since there is a single insertion of ψ̄. This is true if

∆µ = µq − µp = 1.

Thus, only perturbative vacua with relative Morse index 1 contributes. For
generic Morse function f , dim kerD− = 1 and in this case we find the

Third ingredient ∫
zero modes

∣∣∣
minima

= f (q)− f (p)
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