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Moduli space of curves

For g > 0, n > 0, and 2g − 2 + n > 0, consider the moduli space of
curves

Mg,n =

{
(C,p1, . . . ,pn)

∣∣∣∣ C is a complex
compact curve of genus g

with n distinct marked points

}/
∼ .

It parametrises complex curves of a fixed genus g, with n marked
points, up to isomorphism.

It is a smooth complex orbifold of dimension 3g − 3 + n. It admits a
compactification Mg,n.

Fundamental problem

Understand H•(Mg,n) and H•(Mg,n) in terms of generators and relations.
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Moduli space of curves

For example, one can define some natural cohomology classes

ψi ∈ H2(Mg,n), i = 1, . . . ,n

κm ∈ H2m(Mg,n), m = 1, . . . , 3g − 3 + n

λj ∈ H2j(Mg,n), j = 1, . . . ,g

...

Which are the relations between such classes in the cohomology ring
H•(Mg,n)? For instance,

λ2 =
1
2
λ2

1.
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Intersection theory

Since Mg,n is a complex compact orbifold, we can talk about
intersection theory on it: for every α ∈ H6g−6+2n(Mg,n), it makes sense to
consider ∫

Mg,n

α ∈ Q.

Easier problem

Understand the intersection theory of Mg,n.

For instance, how to compute the following number?

〈τd1 · · · τdn〉g =

∫
Mg,n

ψ
d1
1 · · ·ψ

dn
n , d1 + · · ·+ dn = 3g − 3 + n.

Many enumerative problems have an intersection theoretic
expression, e.g. Hurwitz numbers, Gromov–Witten invariants,
asymptotic counting of square-tiled surfaces, ecc.
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ψ-classes intersections

〈τd1 · · · τdn〉g =

∫
Mg,n

ψ
d1
1 · · ·ψ

dn
n , d1 + · · ·+ dn = 3g − 3 + n.

Theorem (Witten conjecture, Kontsevich theorem ’92)

We have a recursion on 2g − 2 + n:

〈τd1
· · ·τdn〉g =

n∑
i=2

(2d1 + 2di − 1)!!
(2d1 + 1)!! (2di − 1)!!

〈τd1+di−1τd2
· · · τ̂di

· · ·τdn〉g

+ 1
2

∑
a+b=d1−2

(2a + 1)!! (2b + 1)!!
(2d1 + 1)!!

(
〈τaτbτd2

· · ·τdn〉g−1

+
∑

g1+g2=g
J1tJ2={τd2

,...,τdn }

〈τaJ1〉g1
〈τbJ2〉g2

)

with initial conditions 〈τ3
0〉0 = 1 and 〈τ1〉1 = 1

24 .
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Ribbon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each
vertex.

G1
•

•

6=

G2
•

•

From the geometric realisation |G|, we have a well-defined genus
g > 0 and number of boundary components n > 1 of G. We call (g,n)
the type of G.

We assume ribbon graphs to be connected, with vertices of valency
> 3, and labeled boundaries.
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Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph G with an assignment
` : EG → R+. The space of such metrics is REG

+ .

•

•

• •

• • ••

•

• •

∼= R3
+Mcomb

0,3 =
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The combinatorial moduli space

Define the combinatorial moduli space

Mcomb
g,n =

⋃
G ribbon graph

of type (g,n)

R
EG
+

Aut(G)
,

where we glue orbicells through degeneration of edges.

We have a map p : Mcomb
g,n → Rn

+, assigning to each metric ribbon
graph the length of the labeled faces. We set Mcomb

g,n (L) = p−1(L).

Proposition (Jenkins ’57, Strebel ’67, Harer ’86)

Mcomb
g,n (L) is a real orbicell complex of dimension 6g − 6 + 2n, and there

exists a homeomorphism of topological orbifolds

Mcomb
g,n (L) ∼= Mg,n.
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The combinatorial Teichmüller space

Consider a connected, topological compact surface Σ of genus
g > 0, with n > 1 labeld boundary components ∂1Σ, . . . ,∂nΣ.

Define the combinatorial Teichmüller space

Tcomb
Σ =

{
f : Σ→ |G|

∣∣∣ G is a metric ribbon graph
f is a homeo respecting the labeling

}/
∼

where (f ,G) ∼ (f ′,G ′) iff there exists a MRG isomorphism φ : G→ G ′

such that |φ| ◦ f is homotopic to f ′. We will denote [f ,G] by G and call it
a embedded MRG. We have a map π : Tcomb

Σ →Mcomb
g,n , π(G) = G.

•

•
a

b

c

6=

•

•
a

b

c

•

•
a

b c
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The combinatorial Teichmüller space

Again we have a map p : Tcomb
Σ → Rn

+, assigning to each metric ribbon
graph the length of the labeled faces. We set Tcomb

Σ (L) = p−1(L).

Proposition

Tcomb
Σ (L) is a real cell complex of dimension 6g − 6 + 2n. The pure

mapping class group ModΣ = Homeo+(Σ,∂Σ)/Homeo0(Σ) is acting on
Tcomb
Σ (L), and

Tcomb
Σ (L)/ModΣ ∼= Mcomb

g,n (L).
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Example 1: a pair of pants

• •

•

•
•

•

•
•

•

•◦•

∼= Mcomb
0,3

∼= R3
+Tcomb

P =
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Example 2: a one-holed torus

Tcomb
T =

··
·

· · ·

•
•

•

•

◦

◦

•

··
·

· · ·
•
•
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Length of simple closed curve

Consider a (homotopy class of a) simple closed curve γ in Σ, and
G ∈ Tcomb

Σ . By homotoping the curve to the embedded graph and
measuring summing up the length of the edges it travels through, we
obtain the length of γ with respect to G: `G(γ) ∈ R+.

•
•

•

•

γ

a

b

c

d

e

f

•
•

•

•
a

b

c

d

e

f

`G(γ) = c + d + 2e + f .
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Cutting

If γ is a simple closed curve in Σ and G ∈ Tcomb
Σ , one can cut G along γ

to obtain a new embedded MRG on the cut surface.

•
•
γ

c

a

b

•
•

c

a + b a + b
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Gluing

Fix G ∈ Tcomb
Σ , G ′ ∈ Tcomb

Σ′ , and ∂iΣ, ∂jΣ
′ boundary components such

that `G(∂iΣ) = `G′(∂jΣ
′). Fix an identification ∂iΣ ∼ ∂jΣ

′ and τ ∈ R.

Then for a.e. τ ∈ R, it is possible to glue G1 and G2 along ∂iΣ ∼ ∂jΣ
′ with

twist τ, and obtain an embedded MRG on the glued surface.

• •
•

•
◦

◦

a

b s

r

t
c

a + b = r + s

•
••◦

•◦
r −τ

b −τ

t
c τ

a − r +τ
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Combinatorial Fenchel–Nielsen coordinates

Fix a pants decomposition P = (γ1, . . . ,γ3g−3+n) of Σ, together with a
set coordinate curves S = (βj)j∈J . We have a map

FN : Tcomb
Σ (L) −→ (R+ ×R)3g−3+n

G 7−→
(
`G(γi), τG(γi)

)3g−3+n
i=1

called the combinatorial Fenchel–Nielsen coordinates.

•
•

β

γ

G =

c

a

b

FN(G) =
(
`G(γ), τG(γ)

)
=
(
a + b,−a

)
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Combinatorial Fenchel–Nielsen coordinates

Theorem (Andersen, Borot, Charbonnier, AG, Lewański, Wheeler)

For every choice (P,S), the map

FN : Tcomb
Σ (L) −→ (R+ ×R)3g−3+n

is a homeomorphism onto its image, with an open dense image.

Upshot. To talk about length, cutting and gluing, we have to consider
markings of MRGs (they do not make sense at the level of the
combinatorial moduli space). Thanks to this, we found global
coordinates (`i , τi)

3g−3+n
i=1 on Tcomb

Σ (L).
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The Kontsevich form

There exists natural 2-form ωK on Tcomb
Σ (L), called the Kontsevich form,

defined on each cell by

ωK =
1
2

n∑
i=1

∑
e[i]

a ≺e[i]
b

d`
e[i]

a
∧ d`

e[i]
b
,

where e[i]
1 ,e[i]

2 , . . . are the edges around the ith face of the ribbon
graph underlying the cell, and ≺ is the order on the edges induced by
the orientation of the surface.

•
•

c

a

b

ωK = da ∧ db + db ∧ dc + da ∧ dc
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The Kontsevich form

Theorem (Kontsevich, ’92)

The form ωK on Tcomb
Σ (L) is symplectic on Tcomb

Σ (L), is mapping class
group invariant, and the symplectic volume of Mcomb

g,n (L), denoted
Vg,n(L), is finite and given by∫

Mcomb
g,n (L)

ω
∧(3g−3+n)
K

(3g − 3 + n)!
=

∑
d1+···+dn=3g−3+n

〈τd1 · · · τdn〉g
n∏

i=1

L2di
i

2di di !
.

Upshot: the computation of all 〈τd1 · · · τdn〉g is equivalent to the
computation of the symplectic volume Vg,n(L).
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A combinatorial Wolpert formula

Theorem (ABCGLW)

For every choice of pants decomposition and coordinate curves on Σ,
we have a global coordinates (`i , τi)

3g−3+n
i=1 on Tcomb

Σ (L). Then

ωK =

3g−3+n∑
i=1

d`i ∧ dτi .

•
•

β

γ

L

c

a

b

ωK = da ∧ db + db ∧ dc + da ∧ dc

d`∧ dτ = d(a + b)∧ d(−a)

d(2a + 2b + 2c) = 0 =⇒ ωK = d`∧ dτ
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A combinatorial Mirzakhani identity

Consider the following auxiliary functions D,R : R3
+ → R+:

D(L, `1, `2) = [L − `1 − `2]+

R(L, L ′, `) = 1
2

(
[L − L ′ − `]+ − [−L + L − `]+ + [L + L ′ − `]+

)
where [x ]+ = max(x , 0).

Theorem (ABCGLW)

For any G ∈ Tcomb
Σ (L), we have

L1 =

n∑
i=2

∑
γ

R
(
L1, Li , `G(γ)

)
+ 1

2

∑
γ,γ′

D
(
L1, `G(γ), `G(γ

′)
)
.

Here, the first sum is over simple closed curves γ bounding a pair of
pants with ∂1Σ and ∂iΣ, and the second sum is over all pairs of simple
closed curves γ,γ ′ bounding a pair of pants with ∂1Σ.
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Witten–Kontsevich recursion from Mirzakhani

combinatorial
Wolpert formula

combinatorial
Mirzakhani identity

recursion for Vg,n(L)

The Kontsevich volumes are computed recursively by

Vg,n(L1, . . . , Ln) =

n∑
i=2

∫
R+

d` `
R(L1, Li , `)

L1
Vg,n−1(`, L2, . . . , L̂i , . . . , Ln)

+ 1
2

∫
R2
+

d`d`′ ``′
D(L1, `, `

′)

L1

(
Vg−1,n+1(`, `

′, L2, . . . , Ln)

+
∑

g1+g2=g
J1tJ2={L2 ,...,Ln}

Vg1 ,1+|J1|
(`, J1)Vg2 ,1+|J2|

(`′, J2)

)
.

with initial conditions V0,3(L1, L2, L3) = 1 and V1,1(L) = L2

48 .
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Norbury recursion from Mirzakhani

integral structure
Mcomb,Z

g,n

combinatorial
Mirzakhani identity

recursion for Ng,n(L) =
∑

G∈Mcomb,Z
g,n (L)

1
Aut(G)

The number of integral MRGs are computed recursively by

Ng,n(L1, . . . , Ln) =

n∑
i=2

∑
`>1

`
R(L1, Li , `)

L1
Ng,n−1(`, L2, . . . , L̂i , . . . , Ln)

+ 1
2

∑
`,`′>1

``′
D(L1, `, `

′)

L1

(
Ng−1,n+1(`, `

′, L2, . . . , Ln)

+
∑

g1+g2=g
J1tJ2={L2 ,...,Ln}

Ng1 ,1+|J1|
(`, J1)Ng2 ,1+|J2|

(`′, J2)

)
.

with N0,3(L1, L2, L3) =
1+(−1)L1+L2+L3

2 and N1,1(L) =
1+(−1)L

2
L2−4

48 .
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More from these combinatorial spaces?

Define NΣ : T
comb
Σ ×R→ N the counting function,

NΣ(G, t) = # { γ | multicurve in Σ with `G(γ) 6 t } .

Theorem (ABCGLW)

The Laplace transform of NΣ in the cut-off variable t , namely∫
R+

NΣ(G, t)e−ts dt ,

is computed recursively by a Mirzakhani-type recursion (geometric
recursion). Moreover∫

R+

(∫
Mcomb

g,n (L)
Ng,n(G, t)

ω
∧(3g−3+n)
K

(3g − 3 + n)!

)
e−ts dt

is computed by topological recursion. Taking the asymtotic as t →∞,
we get the Masur–Veech volumes.
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Thank you!
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