Background 0000	Length, cut and glue 00000	

The Kontsevich geometry of the combinatorial Teichmüller spaces

Alessandro Giacchetto

j/w J.E. Andersen, G. Borot, S. Charbonnier, D. Lewański, C. Wheeler

Max Planck Institute for Mathematics, Bonn

2 March 2020, Monash University

Background ●000	Length, cut and glue 00000	
		_

For $g \ge 0$, $n \ge 0$, and 2g - 2 + n > 0, consider the moduli space of curves

$$\mathcal{M}_{g,n} = \left\{ \begin{array}{c} (C, p_1, \dots, p_n) \middle| \begin{array}{c} C \text{ is a complex} \\ \text{compact curve of genus } g \\ \text{with } n \text{ distinct marked points} \end{array} \right\} \Big/ \sim$$

It parametrises complex curves of a fixed genus g, with n marked points, up to isomorphism.

It is a smooth complex orbifold of dimension 3g - 3 + n. It admits a compactification $\overline{\mathcal{M}}_{g,n}$.

Fundamental problem

Understand $H^{\bullet}(\mathcal{M}_{g,n})$ and $H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ in terms of generators and relations.

Background ●000	Length, cut and glue 00000	
		_

For $g \ge 0$, $n \ge 0$, and 2g - 2 + n > 0, consider the moduli space of curves

$$\mathcal{M}_{g,n} = \left\{ \begin{array}{c} (C, p_1, \dots, p_n) \middle| \begin{array}{c} C \text{ is a complex} \\ \text{compact curve of genus } g \\ \text{with } n \text{ distinct marked points} \end{array} \right\} \Big/ \sim$$

It parametrises complex curves of a fixed genus g, with n marked points, up to isomorphism.

It is a smooth complex orbifold of dimension 3g - 3 + n. It admits a compactification $\overline{\mathcal{M}}_{g,n}$.

Fundamental problem

Understand $H^{\bullet}(\mathcal{M}_{g,n})$ and $H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ in terms of generators and relations.

Background 0●00	Length, cut and glue 00000	

For example, one can define some natural cohomology classes

$$\begin{split} \psi_i &\in H^2(\overline{\mathcal{M}}_{g,n}), \ i = 1, \dots, n \\ \kappa_m &\in H^{2m}(\overline{\mathcal{M}}_{g,n}), \ m = 1, \dots, 3g - 3 + n \end{split}$$

$$\lambda_j \in H^{2j}(\overline{\mathcal{M}}_{g,n}), \ j = 1, \ldots, g$$

.

Which are the relations between such classes in the cohomology ring $H^{\bullet}(\overline{\mathcal{M}}_{a,n})$? For instance,

$$\lambda^2 = \frac{1}{2}\lambda_1^2.$$

Background 0●00	Length, cut and glue 00000	

For example, one can define some natural cohomology classes

$$\begin{split} \psi_i &\in H^2(\overline{\mathcal{M}}_{g,n}), \ i = 1, \dots, n \\ \kappa_m &\in H^{2m}(\overline{\mathcal{M}}_{g,n}), \ m = 1, \dots, 3g - 3 + n \\ \lambda_j &\in H^{2j}(\overline{\mathcal{M}}_{g,n}), \ j = 1, \dots, g \\ \vdots \end{split}$$

Which are the relations between such classes in the cohomology ring $H^{\bullet}(\overline{\mathcal{M}}_{q,n})$? For instance,

$$\lambda^2 = \frac{1}{2}\lambda_1^2.$$

Background 00●0		Length, cut and glue 00000		
Intersection theory				

$$\alpha \in \mathbb{Q}.$$

Easier problem

Understand the intersection theory of $\overline{\mathcal{M}}_{g,n}$

For instance, how to compute the following number?

$$\langle \tau_{d_1}\cdots\tau_{d_n}\rangle_g = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1}\cdots\psi_n^{d_n}, \qquad d_1+\cdots+d_n = 3g-3+n.$$

Background 00●0		Length, cut and glue 00000	
Intersect	tion theory		

$$\overline{\mathfrak{M}}_{g,n} \alpha \in \mathbb{Q}.$$

Easier problem

Understand the intersection theory of $\overline{\mathcal{M}}_{g,n}$.

For instance, how to compute the following number?

$$\langle \tau_{d_1}\cdots\tau_{d_n}\rangle_g = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1}\cdots\psi_n^{d_n}, \qquad d_1+\cdots+d_n = 3g-3+n.$$

$$\alpha \in \mathbb{Q}.$$

Easier problem

Understand the intersection theory of $\overline{\mathcal{M}}_{g,n}$.

For instance, how to compute the following number?

$$\langle \tau_{d_1}\cdots \tau_{d_n} \rangle_g = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1}\cdots \psi_n^{d_n}, \qquad d_1+\cdots+d_n = 3g-3+n.$$

$$\alpha \in \mathbb{Q}.$$

Easier problem

Understand the intersection theory of $\overline{\mathcal{M}}_{g,n}$.

For instance, how to compute the following number?

$$\langle \tau_{d_1}\cdots \tau_{d_n} \rangle_g = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1}\cdots \psi_n^{d_n}, \qquad d_1+\cdots+d_n = 3g-3+n.$$

Background 000●		Length, cut and glue 00000	
ψ-classe	s intersections		

$$\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g = \int_{\overline{\mathcal{M}}_{q,n}} \psi_1^{d_1} \cdots \psi_n^{d_n}, \qquad d_1 + \cdots + d_n = 3g - 3 + n$$

Theorem (Witten conjecture, Kontsevich theorem '92)

We have a recursion on 2g - 2 + n:

$$\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g = \sum_{l=2}^n \frac{(2d_l + 2d_l - 1)!!}{(2d_l + 1)!! (2d_l - 1)!!} \langle \tau_{d_1 + d_l - 1} \tau_{d_2} \cdots \widehat{\tau_{d_l}} \cdots \tau_{d_n} \rangle_g$$

$$+ \frac{1}{2} \sum_{a+b=d_1-2} \frac{(2a+1)!! (2b+1)!!}{(2d_1 + 1)!!} \left(\langle \tau_a \tau_b \tau_{d_2} \cdots \tau_{d_n} \rangle_{g-1} \right)$$

$$+ \sum_{\substack{g_1 + g_2 = g \\ J_1 \sqcup J_2 = \{\tau_{d_2}, \dots, \tau_{d_n}\}} \langle \tau_a J_1 \rangle_{g_1} \langle \tau_b J_2 \rangle_{g_2} \right)$$

with initial conditions $\langle \tau_0^3 \rangle_0 = 1$ and $\langle \tau_1 \rangle_1 = \frac{1}{24}$.

Background 000●	Length, cut and glue 00000	

ψ -classes intersections

$$\left\langle \tau_{d_1}\cdots\tau_{d_n}\right\rangle_g = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1}\cdots\psi_n^{d_n}, \qquad d_1+\cdots+d_n = 3g-3+n.$$

Theorem (Witten conjecture, Kontsevich theorem '92)

We have a recursion on 2g - 2 + n:

$$\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g = \sum_{i=2}^n \frac{(2d_1 + 2d_i - 1)!!}{(2d_1 + 1)!! (2d_i - 1)!!} \langle \tau_{d_1 + d_i - 1} \tau_{d_2} \cdots \widehat{\tau_{d_i}} \cdots \tau_{d_n} \rangle_g$$

$$+ \frac{1}{2} \sum_{a+b=d_1-2} \frac{(2a+1)!! (2b+1)!!}{(2d_1 + 1)!!} \left(\langle \tau_a \tau_b \tau_{d_2} \cdots \tau_{d_n} \rangle_{g-1} \right)$$

$$+ \sum_{\substack{g_1 + g_2 = g \\ J_1 \sqcup J_2 = \{\tau_{d_2}, \dots, \tau_{d_n}\}} \langle \tau_a J_1 \rangle_{g_1} \langle \tau_b J_2 \rangle_{g_2} \right)$$

with initial conditions $\langle \tau_0^3 \rangle_0 = 1$ and $\langle \tau_1 \rangle_1 = \frac{1}{24}$.

Background 0000	A combinatorial model ●000000	Length, cut and glue 00000		
Dibbon graphs				

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

From the geometric realisation |G|, we have a well-defined genus $g \ge 0$ and number of boundary components $n \ge 1$ of G. We call (g, n) the type of G.

We assume ribbon graphs to be connected, with vertices of valency \geqslant 3, and labeled boundaries.

Background 0000	A combinatorial model ●000000	Length, cut and glue 00000	

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

From the geometric realisation |G|, we have a well-defined genus $g \ge 0$ and number of boundary components $n \ge 1$ of G. We call (g, n) the type of G.

We assume ribbon graphs to be connected, with vertices of valency \ge 3, and labeled boundaries.

Background 0000	A combinatorial model ●000000	Length, cut and glue 00000	

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

From the geometric realisation |G|, we have a well-defined genus $g \ge 0$ and number of boundary components $n \ge 1$ of G. We call (g, n) the type of G.

We assume ribbon graphs to be connected, with vertices of valency \ge 3, and labeled boundaries.

Background 0000	A combinatorial model ●000000	Length, cut and glue 00000	

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

From the geometric realisation |G|, we have a well-defined genus $g \ge 0$ and number of boundary components $n \ge 1$ of G. We call (g, n) the type of G.

We assume ribbon graphs to be connected, with vertices of valency ≥ 3 , and labeled boundaries.

Background 0000	A combinatorial model 0●00000	Length, cut and glue 00000	

Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

Background 0000	A combinatorial model 0●00000	Length, cut and glue 00000	

Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

Background 0000	A combinatorial model 0●00000	Length, cut and glue 00000	

Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

Background 0000	A combinatorial model 00●0000	Length, cut and glue 00000	

The combinatorial moduli space

Define the combinatorial moduli space

$$\mathcal{M}_{g,n}^{\text{comb}} = \bigcup_{\substack{G \text{ ribbon graph} \\ \text{ of type } (g,n)}} \frac{\mathbb{R}_{+}^{\ell_{G}}}{\text{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(L) = p^{-1}(L)$.

Proposition (Jenkins '57, Strebel '67, Harer '86)

 $\mathcal{M}_{g,n}^{comb}(L)$ is a real orbicell complex of dimension 6g - 6 + 2n, and there exists a homeomorphism of topological orbifolds

 $\mathcal{M}_{g,n}^{\mathrm{comb}}(L) \cong \mathcal{M}_{g,n}.$

Background 0000	A combinatorial model 00●0000	Length, cut and glue 00000	

The combinatorial moduli space

Define the combinatorial moduli space

$$\mathcal{M}_{g,n}^{\mathsf{comb}} = \bigcup_{\substack{G \text{ ribbon graph} \\ \text{ of type } (g,n)}} \frac{\mathbb{R}_{+}^{\mathcal{E}_{G}}}{\mathsf{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(L) = p^{-1}(L)$.

Proposition (Jenkins '57, Strebel '67, Harer '86)

 $\mathcal{M}_{g,n}^{comb}(L)$ is a real orbicell complex of dimension 6g - 6 + 2n, and there exists a homeomorphism of topological orbifolds

 $\mathcal{M}_{g,n}^{\mathrm{comb}}(L) \cong \mathcal{M}_{g,n}.$

Background 0000	A combinatorial model 00●0000	Length, cut and glue 00000	

The combinatorial moduli space

Define the combinatorial moduli space

$$\mathcal{M}_{g,n}^{\mathsf{comb}} = \bigcup_{\substack{G \text{ ribbon graph} \\ \text{ of type } (g,n)}} \frac{\mathbb{R}_{+}^{\mathcal{E}_{G}}}{\mathsf{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(L) = p^{-1}(L)$.

Proposition (Jenkins '57, Strebel '67, Harer '86)

 $\mathcal{M}_{g,n}^{\text{comb}}(L)$ is a real orbicell complex of dimension 6g-6+2n, and there exists a homeomorphism of topological orbifolds

 $\mathcal{M}^{\mathrm{comb}}_{g,n}(L)\cong \mathcal{M}_{g,n}.$

Background	A combinatorial model	Length, cut and glue	
	000000		

Consider a connected, topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeld boundary components $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

Define the combinatorial Teichmüller space

 $\mathcal{T}^{\text{comb}}_{\Sigma} = \left\{ f \colon \Sigma \to |G| \; \middle| \; \begin{array}{c} \text{G is a metric ribbon graph} \\ \text{f is a homeo respecting the labeling} \end{array} \right\} \Big/ \widehat{}$

where $(f, G) \sim (f', G')$ iff there exists a MRG isomorphism $\phi: G \to G'$ such that $|\phi| \circ f$ is homotopic to f'. We will denote [f, G] by G and call it a **embedded MRG**. We have a map $\pi: \mathcal{T}_{\mathcal{S}}^{comb} \to \mathcal{M}_{a,n}^{comb}$, $\pi(\mathbb{G}) = G$.

Background	A combinatorial model	Length, cut and glue	
	000000		

Consider a connected, topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeld boundary components $\partial_1 \Sigma, \ldots, \partial_n \Sigma$. Define the combinatorial Teichmüller space

$$\mathfrak{T}^{comb}_{\Sigma} = \left\{ f \colon \Sigma \to |G| \; \middle| \; \begin{array}{c} \mathsf{G} \text{ is a metric ribbon graph} \\ \mathsf{f} \text{ is a homeorespecting the labeling} \end{array} \right\} \Big/ \mathsf{T}$$

where $(f, G) \sim (f', G')$ iff there exists a MRG isomorphism $\phi: G \to G'$ such that $|\phi| \circ f$ is homotopic to f'. We will denote [f, G] by \mathbb{G} and call it a embedded MRG. We have a map $\pi: \mathfrak{T}_{\Sigma}^{comb} \to \mathfrak{M}_{a,n}^{comb}$, $\pi(\mathbb{G}) = G$.

Background	A combinatorial model	Length, cut and glue	
	000000		

Consider a connected, topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeld boundary components $\partial_1 \Sigma, \ldots, \partial_n \Sigma$. Define the combinatorial Teichmüller space

$$\mathcal{T}_{\Sigma}^{comb} = \left\{ f \colon \Sigma \to |G| \; \middle| \; \begin{array}{c} \text{G is a metric ribbon graph} \\ \text{f is a homeo respecting the labeling} \end{array} \right\} \Big/ 2$$

where $(f, G) \sim (f', G')$ iff there exists a MRG isomorphism $\phi: G \to G'$ such that $|\phi| \circ f$ is homotopic to f'. We will denote [f, G] by \mathbb{G} and call it a embedded MRG. We have a map $\pi: \mathfrak{T}_{\Sigma}^{comb} \to \mathfrak{M}_{a,n}^{comb}$, $\pi(\mathbb{G}) = G$.

Background 0000	A combinatorial model 0000€00	Length, cut and glue 00000	
The com	nbinatorial Teich		

Again we have a map $p: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathbb{R}_{+}^{n}$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathfrak{T}_{\Sigma}^{\text{comb}}(L) = p^{-1}(L)$.

```
Proposition
```

 $\mathbb{T}^{comb}_{\Sigma}(L)$ is a real cell complex of dimension 6g-6+2n. The pure mapping class group $\mathsf{Mod}_{\Sigma}=\mathsf{Homeo}^+(\Sigma,\partial\Sigma)/\operatorname{Homeo}_0(\Sigma)$ is acting on $\mathbb{T}^{comb}_{\Sigma}(L)$, and

 $\mathfrak{T}^{\mathrm{comb}}_{\Sigma}(L)/\operatorname{\mathsf{Mod}}_{\Sigma}\cong\mathfrak{M}^{\mathrm{comb}}_{g,n}(L).$

Background 0000	A combinatorial model 0000€00	Length, cut and glue 00000			
The combinatorial Teichmüller angeo					

Again we have a map $p: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathbb{R}^{n}_{+}$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathfrak{T}_{\Sigma}^{\text{comb}}(L) = p^{-1}(L)$.

Proposition

 $\mathfrak{T}^{comb}_{\Sigma}(L)$ is a real cell complex of dimension 6g-6+2n. The pure mapping class group $\mathsf{Mod}_{\Sigma}=\mathsf{Homeo}^+(\Sigma,\partial\Sigma)/\operatorname{Homeo}_0(\Sigma)$ is acting on $\mathfrak{T}^{comb}_{\Sigma}(L)$, and

 $\mathfrak{T}_{\Sigma}^{\operatorname{comb}}(L) / \operatorname{\mathsf{Mod}}_{\Sigma} \cong \mathfrak{M}_{g,n}^{\operatorname{comb}}(L).$

Background 0000	A combinatorial model 0000000	Length, cut and glue 00000	

Example 1: a pair of pants

Background	A combinatorial model	Length, cut and glue	
	000000		

Example 2: a one-holed torus

Background	Length, cut and glue	
	●0000	

Consider a (homotopy class of a) simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{\text{comb}}$. By homotoping the curve to the embedded graph and measuring summing up the length of the edges it travels through, we obtain the length of γ with respect to \mathbb{G} : $\ell_{\mathbb{G}}(\gamma) \in \mathbb{R}_+$.

 $\ell_{\rm G}(\gamma) = c + d + 2e + f.$

	Length, cut and glue	
	00000	

Consider a (homotopy class of a) simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{\text{comb}}$. By homotoping the curve to the embedded graph and measuring summing up the length of the edges it travels through, we obtain the length of γ with respect to \mathbb{G} : $\ell_{\mathbb{G}}(\gamma) \in \mathbb{R}_+$.

 $\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f.$

Background	Length, cut and glue	
	00000	

Consider a (homotopy class of a) simple closed curve γ in Σ , and $\mathbb{G} \in \mathcal{T}_{\Sigma}^{\text{comb}}$. By homotoping the curve to the embedded graph and measuring summing up the length of the edges it travels through, we obtain the length of γ with respect to \mathbb{G} : $\ell_{\mathbb{G}}(\gamma) \in \mathbb{R}_+$.

 $\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f.$

Background	Length, cut and glue	
	00000	

Consider a (homotopy class of a) simple closed curve γ in Σ , and $\mathbb{G} \in \mathcal{T}_{\Sigma}^{\text{comb}}$. By homotoping the curve to the embedded graph and measuring summing up the length of the edges it travels through, we obtain the length of γ with respect to \mathbb{G} : $\ell_{\mathbb{G}}(\gamma) \in \mathbb{R}_+$.

 $\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f.$

Background 0000	Length, cut and glue 0●000	
Cutting		

If γ is a simple closed curve in Σ and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$, one can cut \mathbb{G} along γ to obtain a new embedded MRG on the cut surface.

Background 0000	Length, cut and glue 0●000	
Cutting		

If γ is a simple closed curve in Σ and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$, one can cut \mathbb{G} along γ to obtain a new embedded MRG on the cut surface.

Background 0000	Length, cut and glue 0●000	
Cutting		

If γ is a simple closed curve in Σ and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$, one can cut \mathbb{G} along γ to obtain a new embedded MRG on the cut surface.

Background 0000	A combinatorial model 0000000	Length, cut and glue 00●00	The symplectic structure 000	A Mirzakhani identity 00000
Gluing				

Background 0000	A combinatorial model 0000000	Length, cut and glue 00●00	The symplectic structure 000	A Mirzakhani identity 00000
Gluing				

Background 0000	Length, cut and glue 00●00	
Gluing		

Background 0000	Length, cut and glue 00●00	
Gluing		

Background 0000	Length, cut and glue 00●00	
Gluing		

	Length, cut and glue	
	00000	

Fix a pants decomposition $\mathscr{P} = (\gamma_1, \dots, \gamma_{3g-3+n})$ of Σ , together with a set coordinate curves $\mathscr{S} = (\beta_j)_{j \in J}$. We have a map

$$FN: \mathfrak{T}_{\Sigma}^{comb}(\mathcal{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n}$$
$$\mathbb{G} \longmapsto \left(\ell_{G}(\gamma_{i}), \tau_{G}(\gamma_{i})\right)_{i=1}^{3g-3+r}$$

called the combinatorial Fenchel-Nielsen coordinates.

 $FN(\mathbb{G}) = (\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma))$ = (a + b, -a)

	Length, cut and glue	
	00000	

Fix a pants decomposition $\mathcal{P} = (\gamma_1, \dots, \gamma_{3g-3+n})$ of Σ , together with a set coordinate curves $\mathcal{S} = (\beta_j)_{j \in J}$. We have a map

$$FN: \mathfrak{T}_{\Sigma}^{comb}(\mathcal{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n}$$
$$\mathbb{G} \longmapsto \left(\ell_{G}(\gamma_{i}), \tau_{G}(\gamma_{i})\right)_{i=1}^{3g-3+n}$$

called the combinatorial Fenchel-Nielsen coordinates.

 $\begin{aligned} \mathsf{FN}(\mathbb{G}) &= \left(\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma) \right) \\ &= \left(a + b, -a \right) \end{aligned}$

Background 0000	Length, cut and glue 0000●	

Theorem (Andersen, Borot, Charbonnier, AG, Lewański, Wheeler)

For every choice $(\mathcal{P}, \mathcal{S})$, the map

$$\mathsf{FN}: \mathfrak{T}^{\mathsf{comb}}_{\Sigma}(L) \longrightarrow (\mathbb{R}_+ \times \mathbb{R})^{3g-3+n}$$

is a homeomorphism onto its image, with an open dense image.

Upshot. To talk about length, cutting and gluing, we have to consider markings of MRGs (they do not make sense at the level of the combinatorial moduli space). Thanks to this, we found global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathcal{T}_{\Sigma}^{comb}(L)$.

Background 0000	Length, cut and glue 0000●	

Theorem (Andersen, Borot, Charbonnier, AG, Lewański, Wheeler)

For every choice $(\mathcal{P}, \mathcal{S})$, the map

```
\mathsf{FN}: \mathfrak{T}^{\mathsf{comb}}_{\Sigma}(L) \longrightarrow (\mathbb{R}_+ \times \mathbb{R})^{3g-3+n}
```

is a homeomorphism onto its image, with an open dense image.

Upshot. To talk about length, cutting and gluing, we have to consider markings of MRGs (they do not make sense at the level of the combinatorial moduli space). Thanks to this, we found global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathfrak{T}_{\Sigma}^{\text{comb}}(L)$.

Background 0000	Length, cut and glue 00000	The symplectic structure ●00	

There exists natural 2-form ω_K on $\mathcal{T}_{\Sigma}^{comb}(L)$, called the Kontsevich form, defined on each cell by

$$\omega_{K} = \frac{1}{2} \sum_{i=1}^{n} \sum_{\substack{e_{\alpha}^{[i]} \prec e_{b}^{[i]}}} d\ell_{e_{\alpha}^{[i]}} \wedge d\ell_{e_{b}^{[i]}},$$

where $e_1^{[l]}, e_2^{[l]}, \ldots$ are the edges around the *i*th face of the ribbon graph underlying the cell, and \prec is the order on the edges induced by the orientation of the surface.

 $\omega_{\rm K} = da \wedge db + db \wedge dc + da \wedge dc$

Background 0000	Length, cut and glue 00000	The symplectic structure ●00	

There exists natural 2-form ω_K on $\mathcal{T}^{comb}_{\Sigma}(L)$, called the Kontsevich form, defined on each cell by

$$\omega_{K} = \frac{1}{2} \sum_{i=1}^{n} \sum_{\substack{e_{\alpha}^{[i]} \prec e_{b}^{[i]}}} d\ell_{e_{\alpha}^{[i]}} \wedge d\ell_{e_{b}^{[i]}},$$

where $e_1^{[I]}$, $e_2^{[I]}$,... are the edges around the *i*th face of the ribbon graph underlying the cell, and \prec is the order on the edges induced by the orientation of the surface.

 $\omega_{\rm K} = da \wedge db + db \wedge dc + da \wedge dc$

			The symplectic structure	
0000	000000	00000	000	00000

Theorem (Kontsevich, '92)

The form $\omega_{\rm K}$ on $\mathcal{T}_{\Sigma}^{\rm comb}(L)$ is symplectic on $\mathcal{T}_{\Sigma}^{\rm comb}(L)$, is mapping class group invariant, and the symplectic volume of $\mathcal{M}_{g,n}^{\rm comb}(L)$, denoted $V_{g,n}(L)$, is finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(L)} \frac{\omega_{\mathsf{K}}^{\wedge(3g-3+n)}}{(3g-3+n)!} = \sum_{d_1+\dots+d_n=3g-3+n} \langle \tau_{d_1}\dots\tau_{d_n} \rangle_g \prod_{i=1}^n \frac{L_i^{2d_i}}{2^{d_i}d_i!}.$$

Upshot: the computation of all $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g$ is equivalent to the computation of the symplectic volume $V_{g,n}(L)$.

	The symplectic structure	
	000	

Theorem (Kontsevich, '92)

The form $\omega_{\rm K}$ on $\mathfrak{T}^{\rm comb}_{\Sigma}(L)$ is symplectic on $\mathfrak{T}^{\rm comb}_{\Sigma}(L)$, is mapping class group invariant, and the symplectic volume of $\mathfrak{M}^{\rm comb}_{g,n}(L)$, denoted $V_{g,n}(L)$, is finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(L)} \frac{\omega_{\mathsf{K}}^{\wedge(3g-3+n)}}{(3g-3+n)!} = \sum_{d_1+\dots+d_n=3g-3+n} \langle \tau_{d_1}\dots\tau_{d_n} \rangle_g \prod_{i=1}^n \frac{L_i^{2d_i}}{2^{d_i}d_i!}.$$

Upshot: the computation of all $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g$ is equivalent to the computation of the symplectic volume $V_{g,n}(L)$.

Background 0000	Length, cut and glue 00000	The symplectic structure	

A combinatorial Wolpert formula

Theorem (ABCGLW)

For every choice of pants decomposition and coordinate curves on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathfrak{T}_{\Sigma}^{\text{comb}}(L)$. Then

$$\omega_{\mathsf{K}} = \sum_{i=1}^{3g-3+n} d\ell_i \wedge d\tau_i.$$

 $\omega_{K} = da \wedge db + db \wedge dc + da \wedge dc$ $d\ell \wedge d\tau = d(a+b) \wedge d(-a)$

 $d(2a+2b+2c) = 0 \implies \omega_{\rm K} = d\ell \wedge d\tau$

Background	Length, cut and glue	The symplectic structure	
		000	

A combinatorial Wolpert formula

Theorem (ABCGLW)

For every choice of pants decomposition and coordinate curves on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathfrak{T}_{\Sigma}^{comb}(L)$. Then

$$\omega_{\mathsf{K}} = \sum_{i=1}^{3g-3+n} d\ell_i \wedge d\tau_i.$$

$$\omega_{\rm K} = da \wedge db + db \wedge dc + da \wedge dc$$
$$d\ell \wedge d\tau = d(a+b) \wedge d(-a)$$

$$d(2a+2b+2c) = 0 \implies \omega_{\rm K} = d\ell \wedge d\tau$$

	Background 0000	A combinatorial model	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity ●0000			
	A combinatorial Mirzakhani identity							
Consider the following auxiliary functions $\mathcal{D}, \mathcal{R} \colon \mathbb{R}^3 \to \mathbb{R}_+$:								

$$\mathcal{R}(L, L', \ell) = \frac{1}{2} \left([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \right)$$

where
$$[x]_{+} = \max(x, 0)$$
.

Theorem (ABCGLW)

For any $\mathbb{G} \in \mathbb{T}_{\Sigma}^{\text{comb}}(L)$, we have

$$L_{1} = \sum_{l=2}^{n} \sum_{\gamma} \mathcal{R}(L_{1}, L_{l}, \ell_{G}(\gamma)) + \frac{1}{2} \sum_{\gamma, \gamma'} \mathcal{D}(L_{1}, \ell_{G}(\gamma), \ell_{G}(\gamma')).$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ , γ' bounding a pair of pants with $\partial_1 \Sigma$.

Background 0000		Length, cut and glue 00000		A Mirzakhani identity ●0000		
A combinatorial Mirzakhani identity						
Consi	der the following a	uxiliary functions ($\mathcal{D}, \mathscr{R} \colon \mathbb{R}^3_+ o \mathbb{R}_+$:			

$$\mathcal{D}(L, \ell_1, \ell_2) = [L - \ell_1 - \ell_2]_+$$

$$\mathcal{R}(L, L', \ell) = \frac{1}{2} \Big([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \Big)$$

where $[x]_{+} = \max(x, 0)$.

Theorem (ABCGLW)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}(L)$, we have

$$L_{1} = \sum_{i=2}^{n} \sum_{\gamma} \mathscr{R}(L_{1}, L_{i}, \ell_{\mathbb{G}}(\gamma)) + \frac{1}{2} \sum_{\gamma, \gamma'} \mathscr{D}(L_{1}, \ell_{\mathbb{G}}(\gamma), \ell_{\mathbb{G}}(\gamma')).$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ , γ' bounding a pair of pants with $\partial_1 \Sigma$.

The Kontsevich volumes are computed recursively by

$$V_{g,n}(L_1,...,L_n) = \sum_{l=2}^{n} \int_{\mathbb{R}_+} d\ell \,\ell \,\frac{\mathcal{R}(L_1,L_l,\ell)}{L_1} \, V_{g,n-1}(\ell,L_2,...,\hat{L}_l,...,L_n) + \frac{1}{2} \int_{\mathbb{R}_+^2} d\ell d\ell' \,\ell\ell' \,\frac{\mathcal{D}(L_1,\ell,\ell')}{L_1} \left(V_{g-1,n+1}(\ell,\ell',L_2,...,L_n) \right) + \sum_{\substack{g_1+g_2=g\\J_1\sqcup J_2=(L_2,...,L_n)}} V_{g_1,1+|J_1|}(\ell,J_1) \, V_{g_2,1+|J_2|}(\ell',J_2) \right).$$

with initial conditions $V_{0,3}(L_1, L_2, L_3) = 1$ and $V_{1,1}(L) = \frac{L^2}{48}$.

The Kontsevich volumes are computed recursively by

$$V_{g,n}(L_{1},...,L_{n}) = \sum_{i=2}^{n} \int_{\mathbb{R}_{+}} d\ell \,\ell \,\frac{\mathscr{R}(L_{1},L_{i},\ell)}{L_{1}} \,V_{g,n-1}(\ell,L_{2},...,\widehat{L}_{i},...,L_{n}) \\ + \frac{1}{2} \int_{\mathbb{R}_{+}^{2}} d\ell d\ell' \,\ell\ell' \,\frac{\mathscr{D}(L_{1},\ell,\ell')}{L_{1}} \left(V_{g-1,n+1}(\ell,\ell',L_{2},...,L_{n}) \right) \\ + \sum_{\substack{g_{1}+g_{2}=g\\J_{1}\sqcup J_{2}}=(I_{2},...,L_{n})} V_{g_{1},1+|J_{1}|}(\ell,J_{1}) \,V_{g_{2},1+|J_{2}|}(\ell',J_{2}) \right).$$

with initial conditions $V_{0,3}(L_1, L_2, L_3) = 1$ and $V_{1,1}(L) = \frac{L^2}{48}$.

The number of integral MRGs are computed recursively by

$$N_{g,n}(L_1, \dots, L_n) = \sum_{l=2}^n \sum_{\ell \ge 1} \ell \frac{\mathcal{R}(L_1, L_l, \ell)}{L_1} N_{g,n-1}(\ell, L_2, \dots, \widehat{L}_l, \dots, L_n)$$

+ $\frac{1}{2} \sum_{\ell, \ell' \ge 1} \ell \ell' \frac{\mathcal{D}(L_1, \ell, \ell')}{L_1} \left(N_{g-1, n+1}(\ell, \ell', L_2, \dots, L_n) + \sum_{\substack{g_1 + g_2 = g \\ J_1 \cup J_2 = (L_2, \dots, L_n)}} N_{g_1, 1 + |J_1|}(\ell, J_1) N_{g_2, 1 + |J_2|}(\ell', J_2) \right).$
th $N_{0,3}(L_1, L_2, L_3) = \frac{1 + (-1)^{L_1 + L_2 + L_3}}{2} \text{ and } N_{1,1}(L) = \frac{1 + (-1)^{L_1} L_2^2 - 4}{2}.$

The number of integral MRGs are computed recursively by

$$\begin{split} N_{g,n}(L_1,\ldots,L_n) &= \sum_{i=2}^n \sum_{\ell \geqslant 1} \ell \, \frac{\mathcal{R}(L_1,L_i,\ell)}{L_1} \, N_{g,n-1}(\ell,L_2,\ldots,\widehat{L_i},\ldots,L_n) \\ &+ \frac{1}{2} \sum_{\ell,\ell' \geqslant 1} \ell \ell' \, \frac{\mathcal{D}(L_1,\ell,\ell')}{L_1} \left(N_{g-1,n+1}(\ell,\ell',L_2,\ldots,L_n) \right. \\ &+ \sum_{\substack{g_1 + g_2 = g \\ J_1 \sqcup J_2 = \{L_2,\ldots,L_n\}}} N_{g_1,1+|J_1|}(\ell,J_1) \, N_{g_2,1+|J_2|}(\ell',J_2) \right) . \end{split}$$
 with $N_{0,3}(L_1,L_2,L_3) = \frac{1+(-1)^{L_1+L_2+L_3}}{2} \text{ and } N_{1,1}(L) = \frac{1+(-1)^{L}}{2} \frac{L^2-4}{48}.$

Background 0000	Length, cut and glue 00000	A Mirzakhani identity 000●0

More from these combinatorial spaces?

Define \mathcal{N}_{Σ} : $\mathcal{T}_{\Sigma}^{\text{comb}} \times \mathbb{R} \to \mathbb{N}$ the counting function,

 $\mathbb{N}_{\Sigma}(\mathbb{G}, t) = \#\{\gamma \mid \text{multicurve in } \Sigma \text{ with } \ell_{\mathbb{G}}(\gamma) \leqslant t\}.$

Theorem (ABCGLW)

The Laplace transform of N_{Σ} in the cut-off variable *t*, namely

$$\mathbb{N}_{\Sigma}(\mathbb{G},t) e^{-ts} dt,$$

is computed recursively by a Mirzakhani-type recursion (geometric recursion). Moreover

$$\int_{\mathbb{R}_+} \left(\int_{\mathcal{M}_{g,n}^{comb}(L)} \mathcal{N}_{g,n}(\mathbb{G},t) \, \frac{\omega_{\mathsf{K}}^{\wedge (3g-3+n)}}{(3g-3+n)!} \right) e^{-ts} \, dt$$

is computed by topological recursion. Taking the asymtotic as $t \to \infty$, we get the Masur–Veech volumes.

Background 0000		Length, cut and glue 00000		A Mirzakhani identity 000●0	
More from these combinatorial spaces?					

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{I}_{\Sigma}^{comb} \times \mathbb{R} \to \mathbb{N}$ the counting function,

 $\mathfrak{N}_{\Sigma}(\mathbb{G}, t) = \#\{\gamma \mid \text{multicurve in } \Sigma \text{ with } \ell_{\mathbb{G}}(\gamma) \leqslant t \}.$

Theorem (ABCGLW)

The Laplace transform of N_{Σ} in the cut-off variable *t*, namely

 $\mathbb{N}_{\Sigma}(\mathbb{G},t) e^{-ts} dt,$

is computed recursively by a Mirzakhani-type recursion (geometric recursion). Moreover

$$\int_{\mathbb{R}_+} \left(\int_{\mathcal{M}_{g,n}^{comb}(L)} \mathcal{N}_{g,n}(\mathbb{G},t) \, \frac{\omega_{\mathsf{K}}^{\wedge (3g-3+n)}}{(3g-3+n)!} \right) e^{-ts} \, dt$$

is computed by topological recursion. Taking the asymtotic as $t \to \infty$, we get the Masur–Veech volumes.

Background 0000	Length, cut and glue 00000	A Mirzakhani identity 000●0

More from these combinatorial spaces?

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{I}_{\Sigma}^{comb} \times \mathbb{R} \to \mathbb{N}$ the counting function,

 $\mathfrak{N}_{\Sigma}(\mathbb{G}, t) = \#\{\gamma \mid \text{multicurve in } \Sigma \text{ with } \ell_{\mathbb{G}}(\gamma) \leqslant t \}.$

Theorem (ABCGLW)

The Laplace transform of \mathcal{N}_{Σ} in the cut-off variable *t*, namely

$$\mathbb{R}_+ \mathcal{N}_{\Sigma}(\mathbb{G},t) e^{-ts} dt,$$

is computed recursively by a Mirzakhani-type recursion (geometric recursion). Moreover

$$\int_{\mathbb{R}_+} \left(\int_{\mathcal{M}_{g,n}^{comb}(L)} \mathcal{N}_{g,n}(\mathbb{G},t) \, \frac{\omega_{\mathsf{K}}^{\wedge (3g-3+n)}}{(3g-3+n)!} \right) e^{-ts} \, dt$$

is computed by topological recursion. Taking the asymtotic as $t \to \infty$, we get the Masur–Veech volumes.

Background 0000	Length, cut and glue 00000	A Mirzakhani identity 0000●

Thank you!

- J.E. Andersen, G. Borot, S. Charbonnier, A. Giacchetto, D. Lewański, and C. Wheeler. "On the Kontsevich geometry of the combinatorial Teichmüller space". In preparation.
- 2. J.E. Andersen, G. Borot, and N. Orantin. "Geometric recursion". (2017) [math.GT]1711.04729.
- 3. M. Kontsevich "Intersection theory on the moduli space of curves and the matrix Airy function". *Commun. Math. Phys.* 147 (1992).
- 4. M. Mirzakhani "Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces". *Invent. Math.* 167.1 (2007).
- 5. P. Norbury "Counting lattice points in the moduli space of curves". *Math. Res. Lett.* 17 (2010).
- E. Witten "Two-dimensional gravity and intersection theory on moduli space". In: Large N expansion in quantum field theory and statistical physics Vol.1. (1990).