
Classification problems Moduli space of curves Afternoon’s talk

A gentle introduction
to moduli spaces

Alessandro Giacchetto

Max Planck Institute for Mathematics, Bonn

20 March 2020, University of Melbourne



Classification problems Moduli space of curves Afternoon’s talk

Classifying objects

Imagine you want to classify your wardrobe, sorting your clothes by
type: you will fill a drawer with socks, one with your underwear, another
one with trousers, etc.

set of objects

+ =⇒ equivalence classes

equivalence relation

Another example: classifying finite groups, up to isomorphism.
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Moduli spaces

When do we talk about moduli spaces?

We talk about moduli space when
the set of equivalence classes has a “natural” geometric structure.

Example (Moduli of sphere)

A sphere is a set{
(x0, . . . , xd) ∈ Rd+1

∣∣∣∣∣
d∑

i=0

(xi − pi)
2 = R2

}
⊂ Rd+1,

for some d ∈ N+, p = (p0, . . . ,pd) ∈ Rd+1 and R ∈ R+.

Then the moduli of spheres is{
spheres

}/
isometry = N+ ×R+,

where N+ accounts for the dimension and R+ accounts for the radius.
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Moduli spaces

Example (Projective spaces)

Consider the set of lines through the origin in Cd+1: the complex
projective space.

CPd =
Cd+1 \ { 0 }

∼

where v ∼ λv for some λ 6= 0. It is a complex, compact manifold of
complex dimension d.

In many cases, moduli spaces are endowed with more geometric
structure than just the topology. For example, CPd has a natural
symplectic form, called the Fubini–Study form ωFS, and

Vol(CPd) =

∫
CPd

ωd
FS

d!
=
πd

d!
.
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Riemann surfaces

Consider connected, compact, complex curves (also called Riemann
surfaces) with n marked, labeled, pairwise distinct points.

Every compact complex curve has an underlying structure of a
2-dimensional oriented smooth compact surface, that is uniquely
characterized by its genus g.

We will call (g,n) the type of the Riemann surface.

Goal

Classify Riemann surfaces of fixed type, up to isomorphisms that
respect the marked points.
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A first example

(g,n) = (0, 0). The sphere possesses a unique structure of Riemann
surface up to isomorphism: that of a complex projective line CP1. The
automorphism group of CP1 is PSL(2,C), acting by(

a b
c d

)
z =

az + b
cz + d

.

(g,n) = (0, 3). Consider now CP1 with three marked points, p1,p2,p3.
There exists an automorphism of the sphere, such that the marked
points are mapped to 0, 1,∞. In other words, there is only one
Riemann surface of type (0, 3) up to isomorphism.

(g,n) = (0, 4). Consider now CP1 with four marked points, p1,p2,p3,p4.
There exists an automorphism of the sphere, such that the marked
points are mapped to 0, 1,∞, λ for some λ ∈ CP1 \ { 0, 1,∞ }. In other
words, the set of Riemann surface of type (0, 4) up to isomorphism is

CP1 \ { 0, 1,∞ } .
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The moduli space of Riemann surfaces

For arbitrary (g,n), one can define the moduli space of Riemann
surfaces

Mg,n =
{
(C,p1, . . . ,pn)

∣∣∣ C has genus g
}/

iso.

We already saw that

M0,3 = { ∗ } , M0,4 = CP1 \ { 0, 1,∞ } .

In general, we have the following natural geometric structure on Mg,n.

Theorem

If 2g − 2 + n > 0, then Mg,n is a smooth complex orbifold of complex
dimension 3g − 3 + n.
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Afternoon’s talk

After an intersection-theoretic motivation (and the presentation of
Witten’s conjecture/Kontsevich theorem), I will introduce a family of
combinatorial models of the moduli space of Riemann surfaces:

Mcomb
g,n (~L) ∼= Mg,n, ~L ∈ Rn

+.

•RS1(R)

All the element in the family are
homeomorphic

S1(R) ∼= S1,

but have different volumes

Vol(S1(R)) = 2πR.

Every space Mcomb
g,n (~L) is

endowed with a symplectic form
ωK, called the Kontsevich form,
and I will present a method to
compute the symplectic volume

Vg,n(~L) =
∫
Mcomb

g,n (~L)

ω
3g−3+n
K

(3g − 3 + n)!

by induction on 2g − 2 + n,
based on a Mirzakhani-type
identity.
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Thank you!
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