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Goal

Following Bridgeland–Smith, the aim of the next talks is to

1) define a CY3 ∆-category D(S, M) associated to a marked
bordered surface (S, M),

2) characterise the associated space of stability conditions in terms
of meromorphic quadratic differentials on the surface:

Stab4(D(S, M))�Aut4(D(S, M))
∼= Quad♥(S, M),

3) give a precise link between the trajectory structure of flat surfaces
and the theory of wall-crossing and DT invariants.
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Stability conditions

Let D be a ∆-category s.t. K0(D) ∼= Z⊕n is free of finite rank.

Definition

A stability condition on D is a pair (Z ,P), where
• Z : K0(D)→ C is group homomorphism (central charge)

• ∀φ ∈ R, P(φ) ⊂ D is a full subcategory (of semistable objects of
phase φ)

satisfying the following axioms.
• For all 0 6= E ∈ P(φ), Z(E) ∈ R+eiπφ

• P(φ)[1] = P(φ+ 1)

• For φ1 > φ2, then Hom(P(φ1),P(φ2)) = 0

• For all 0 6= E ∈ D, ∃(!) a Harder–Narasimhan filatration
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Space of stability conditions

Define the space of stability conditions on D:

Stab(D) :=
{
(Z ,P)

∣∣∣ stability conditions on D
satisfying the support property

}
.

Theorem (Bridgeland)

The space Stab(D) has a natural Hausdorff topology, and the forgetful
map

Stab(D) −→ Hom(K0(D),C) ∼= Cn, (Z ,P) 7−→ Z

is a local homeomorphism. In particular, the space of stability
conditions is an n-dimensional complex manifold.
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Hearts of t-structures

Definition

A t-structure on D is a pair (D>0,D60) of full subcategories, satisfying
the following axioms
• D>1 := D>0[−1] ⊂ D>0

• Hom(D60,D>1) = 0
• Any 0 6= E ∈ D fits in a DT E60 → E → E>1 → E60[1]

A t-structure is bounded if D =
⋃

n D
>−n ∩D6−n.

The heart of a t-structure is D♥ := D60 ∩D>0.

Facts:
1) The heart of a t-structure is an abelian category

2) A bounded t-structure is determined by its heart

3) Every stability condition (Z ,P) on D has an associated heart

A = P
(
(0, 1]

)
.
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Hearts of stability conditions as chambers

Let A ⊂ D be a heart satisfying some finiteness assumptions:
• A is a finite-length heart, i.e. is artinian and noetherian as abelian

category,
• A has n simple objects S1, . . . , Sn.

Denote by Stab(A) ⊂ Stab(D) the subset of consisting of those stability
conditions whose heart is A. The forgetful map is a bijection

Stab(A) ∼=
{

Z ∈ Hom(K0(D),C)
∣∣ Z(Si) ∈ H̄

}
∼= H̄n, H ∪R<0.

In other words every heart determines a chamber in Stab(D).

The way this cells are glued together is well-described by by means of
tilts at simple objects.
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Tilts from torsion pairs

Definition

Let A be an abelian category. A torsion pair for A is a pair of full
subcategories (T,F) such that
• Hom(T,F) = 0,
• For all E ∈ A, there exists a SES 0→ T → E → F → 0 with T ∈ T and

F ∈ F.

Fact: if A ⊂ D is a heart and (T,F) is a torsion pair for A, then

A# := 〈F,T[−1]〉 ⊂ D

is again a heart for D, called the tilt of A.

T F T[−1]

A

A#
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Tilts at simple objects

Suppose that A is a finite-length heart and S ∈ A is a simple object. Let
〈S〉 ⊂ A be the full subcategory consisting of objects whose simple
factors are isomorphic to S. Define the full subcategories

S⊥ := { A ∈ A | HomA(S, A) = 0 } , ⊥S := { A ∈ A | HomA(A, S) = 0 } .

Lemma

(〈S〉 , S⊥) and (⊥S, 〈S〉) are torsion pairs for A. In other words,

µ−
S (A) := 〈S[1],⊥S〉 , µ+

S (A) := 〈S⊥, S[−1]〉

are tilts of A, called the left and right tilts of A at S.

S[1] ⊥S S

µ−
S (A)

A

S S⊥ S[−1]

µ+
S (A)

A
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Tilts and spaces of stability conditions

Tilts at simple objects controls how the chambers Stab(A) are glued
together.

Proposition (Bridgeland)

Let A ⊂ D be a finite-length heart with n simple objects S1, . . . , Sn, and
suppose that (Z ,P) is a stability condition lying in a codim-1 wall of the
chamber Stab(A), i.e. Im Z(Si) = 0 for a unique simple object Si .
Assume that the tilts µ±Si

(A) are also of finite-length. Then there exists a
neighbourhood U ⊂ Stab(D) of (Z ,P) such that
• Z(Si) ∈ R<0 implies U ⊂ Stab(A) ∪ Stab(µ−

Si
(A)),

• Z(Si) ∈ R>0 implies U ⊂ Stab(A) ∪ Stab(µ+
Si
(A)).

•
(Z ,P)

Z(Si) < 0

Stab(A)Stab(µ−
Si
(A))

· · ·· ·
·

•
(Z ,P)

Z(Si) > 0

Stab(A) Stab(µ+
Si
(A))

· · ·· ·
·



Goal and plan Stability conditions and tilts Quivers with potential Triangulated surfaces Bibliography

Tilts and spaces of stability conditions

Tilts at simple objects controls how the chambers Stab(A) are glued
together.

Proposition (Bridgeland)

Let A ⊂ D be a finite-length heart with n simple objects S1, . . . , Sn, and
suppose that (Z ,P) is a stability condition lying in a codim-1 wall of the
chamber Stab(A), i.e. Im Z(Si) = 0 for a unique simple object Si .
Assume that the tilts µ±Si

(A) are also of finite-length. Then there exists a
neighbourhood U ⊂ Stab(D) of (Z ,P) such that
• Z(Si) ∈ R<0 implies U ⊂ Stab(A) ∪ Stab(µ−

Si
(A)),

• Z(Si) ∈ R>0 implies U ⊂ Stab(A) ∪ Stab(µ+
Si
(A)).

•
(Z ,P)

Z(Si) < 0

Stab(A)Stab(µ−
Si
(A))

· · ·· ·
·

•
(Z ,P)

Z(Si) > 0

Stab(A) Stab(µ+
Si
(A))

· · ·· ·
·



Goal and plan Stability conditions and tilts Quivers with potential Triangulated surfaces Bibliography

Tilts and spaces of stability conditions

Tilts at simple objects controls how the chambers Stab(A) are glued
together.

Proposition (Bridgeland)

Let A ⊂ D be a finite-length heart with n simple objects S1, . . . , Sn, and
suppose that (Z ,P) is a stability condition lying in a codim-1 wall of the
chamber Stab(A), i.e. Im Z(Si) = 0 for a unique simple object Si .
Assume that the tilts µ±Si

(A) are also of finite-length. Then there exists a
neighbourhood U ⊂ Stab(D) of (Z ,P) such that
• Z(Si) ∈ R<0 implies U ⊂ Stab(A) ∪ Stab(µ−

Si
(A)),

• Z(Si) ∈ R>0 implies U ⊂ Stab(A) ∪ Stab(µ+
Si
(A)).

•
(Z ,P)

Z(Si) < 0

Stab(A)Stab(µ−
Si
(A))

· · ·· ·
·

•
(Z ,P)

Z(Si) > 0

Stab(A) Stab(µ+
Si
(A))

· · ·· ·
·



Goal and plan Stability conditions and tilts Quivers with potential Triangulated surfaces Bibliography

Summary

Distinguished components in Stab(D)

Let D be a ∆-category equipped with a finite-length heart A with n
simple objects, defined up to tilts at simple objects.

Then Stab(D) is a complex manifold of dimension n, equipped with a
distinguished connected component Stab∗(D) ⊂ Stab(D).

Stab(D) =

Stab∗(D)

t · · ·
Stab(A)
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Quivers

Definition

A quiver Q is a finite oriented graph. It is given by
• a finite set Q0 (vertices),
• a finite set Q1 (arrows),
• two maps s : Q1 → Q0 (taking an arrow to its source) t : Q1 → Q0

(taking an arrow to its target).

A simple example is the ~An quiver, which is an orientation of the An

Dynkin diagram:

~An = 1 2 · · · n − 1 n
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Mutation of quivers

A natural operation on quivers is that of mutation at vertices, defined
by Fomin–Zelevinsky. From now on, we assume that Q has no loops or
2-cycles.

Definition

Fix i ∈ Q0. The mutation µi(Q) is the quiver obtained from Q as follows.

• For each subquiver j b−→ i a−→ k , add a new arrow j
[ab]−−→ k .

• Reverse all arrows incident to i.
• Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Q =

1

2 3

mutation−−−−−→
at 1

1

2 3

1

2 3

1

2 3

= µ1(Q)
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The complete path algebra

A natural object one can attach to a quiver Q is its complete path
algebra: fix an algebraically closed field k , and set

k̂Q :=
∏

p path

kp.

Consider its bounded derived category Db(Mod(k̂Q)). One would like
to obtain linear equivalences of this category under mutations, but it
turns out that this is not the case.

Hint from physics

Consider quivers with potential, their associated category and their
mutations.
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Quivers with potential

Consider

HH0(Q) :=
k̂Q

[k̂Q, k̂Q]
,

that is the set of infinite linear combination of cycles of Q. For each
arrow a ∈ Q1, we have the cyclic derivative ∂a : HH0(Q)→ k̂Q such
that any path p,

∂ap :=
∑

p=uav

vu.

A potential on Q is an element W ∈ HH0(Q) not involving cycles of
length 0.

An example of quiver with potential is

Q =

1

2 3

ab

c

W = abc
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Mutations of quivers with potential

Derksen–Weyman–Zelevinsky showed that mutations can be extended
to quivers with potentials in a nice way.

Theorem (Derksen–Weyman–Zelevinsky)

The mutation operation Q 7→ µi(Q) admits a good extension to quivers
with potentials

(Q, W ) 7−→ µi(Q, W ) := (Q ′, W ′),

i.e. µi(Q) is isomorphic to the quiver Q ′ if W is generic.

For example,

Q =

1

2 3

ab

c

W = abc mutation−−−−−→
at 1

Q ′ =
1

2 3

W ′ = 0
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The complete Ginzburg algebra

Definition

Let (Q, W ) be a quiver with potential. Define a new quiver Q̃, with
Q̃0 = Q0 and graded arrow as follows:
• the arrows of Q in degree 0,
• a new arrow a∗ : j → i of degree −1 for each a : i → j of Q,
• a loop ti : i → i of degree −2 for each vertex i of Q.

Define the complete Ginzburg algebra Γ(Q, W ) := k̂Q̃, endowed with
the unique d of degree 1 such that
• d(a) = 0 for each arrow a of Q,
• d(a∗) = ∂aW for each arrow a of Q,
• d(ti) = ei(

∑
a∈Q1

[a, a∗])ei for each vertex i of Q, where ei is the lazy
path at i.
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An example

Q =

1

2 3

ab

c

W = abc

Then

Q̃ =

1

2 3

a

b∗

t1

b

c∗

t2

c

a∗

t3

d(a∗) = bc,

d(t1) = cc∗ − b∗b,

...
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The associated ∆-category

The main result we need here is due to Keller and Yang.

Theorem (Keller–Yang)

Fix a quiver with potential (Q, W ), and consider the ∆-category
D(Q, W ) := Db(dg-Mod(Γ(Q, W ))).
• D(Q, W ) is of finite type over k and CY3.
• D(Q, W ) has a canonical bounded t-structure, whose heart

A(Q, W ) is the category of finite-dimensional modules over the
complete Jacobi algebra

J(Q, W ) :=
k̂Q

(∂aW | a ∈ Q1)
.

• The heart A(Q, W ) is of finite-length and with simple objects in
bijection with Q0.
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Mutations and tilts

We can now see how mutations of quivers with potentials correspond
to tilts in D(Q, W ).

Theorem (Keller–Yang)

Let (Q, W ) be a quiver with potential and fix a vertex i ∈ Q0. Let
(Q ′, W ′) = µi(Q, W ). There is a canonical pair of k-linear triangulated
equivalences

Φ±i : D(Q ′, W ′) −→ D(Q, W ).

Moreover, if we denote by Si the simple object in A(Q, W ) associated
to the vertex i, we have

Φ±i (A(Q ′, W ′)) = µ±i (A(Q, W )).
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Summary

Distinguished component in Stab(D(Q, W ))

Let (Q, W ) be a quiver with potential, with no loops or 2-cycles,
defined up to mutations.
• There is an associated CY3 ∆-category D(Q, W ) of finite type
• It has a canonical finite-length heart with #Q0 simple objects,

defined up to tilts at simple objects.
• The associated space of stability conditions Stab(D(Q, W )) is a

complex manifold of dimension #Q0, with a distinguished
connected component StabJ(D(Q, W )).
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Ideal triangulations

A marked closed surface is a pair (S, M) consisting of a compact,
oriented close surface S of genus g and a finite non-empty set M ⊂ S
of marked points, also called punctures, of cardinality #M = m > 0.
For the purpose of the following discussion, we suppose that if g = 0,
then m > 5.

An ideal triangulation T of (S, M) is a triangulation of S, whose vertex
set is precisely M. Notice that ideal triangulations have always
6g − 6 + 3m edges. It is called non-degenerate if every vertex has
valency > 3.

To a non-degenerate triangulation T , we associate a quiver Q(T ) with
no loops and 2-cycles as follows.
• The vertex set is composed by midpoints of the edges of T .
• Arrows are obtained by inscribing a small clockwise 3-cycle inside

each triangle of T .
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Example: a sphere with 5 punctures

T 7→ Q(T ) defined as follows.
• The vertex set is composed by midpoints of the edges of T .
• Arrows are obtained by inscribing a small clockwise 3-cycle inside

each triangle of T .

• •

•

•

•

•

• •

•
• •

• •

•• •

•

•

•

◦ ◦

◦

◦

◦
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The potential

Notice that there are two natural system of cycles in Q(T ).

∆) Inside each triangle ∆ of T , a clockwise 3-cycle W∆.

p) Around each puncture p ∈ M of valency d, an anticlockwise
d-cycle Wp.

We define the potential W (T ) on Q(T ) by taking the sum

W (T ) :=
∑

∆ triangle of T

W∆ −
∑
p∈M

Wp.

Thus, we obtain a quiver with potential (Q(T ), W (T )) associated to a
non-degenerate ideal triangulation of (S, M), and consequently a CY3

∆-category D(T ) of finite type over k , equipped with a canonical
t-structure whose canonical heart A(T ) is of finite length and has
6g − 6 + 3m simple objects, in bijection with the vertices of Q(T ) and
the edges of T .
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Notice that there are two natural system of cycles in Q(T ).

∆) Inside each triangle ∆ of T , a clockwise 3-cycle W∆.

p) Around each puncture p ∈ M of valency d, an anticlockwise
d-cycle Wp.

We define the potential W (T ) on Q(T ) by taking the sum

W (T ) :=
∑

∆ triangle of T

W∆ −
∑
p∈M

Wp.

Thus, we obtain a quiver with potential (Q(T ), W (T )) associated to a
non-degenerate ideal triangulation of (S, M), and consequently a CY3

∆-category D(T ) of finite type over k , equipped with a canonical
t-structure whose canonical heart A(T ) is of finite length and has
6g − 6 + 3m simple objects, in bijection with the vertices of Q(T ) and
the edges of T .
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Example: a sphere with 5 punctures

W (T ) =
∑
∆ triangle of T W∆ −

∑
p∈M Wp, where:

∆) inside each triangle ∆ of T , we have a clockwise 3-cycle W∆.
p) around each puncture p ∈ M of valency d, we have an

anticlockwise d-cycle Wp.
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W = ars + bdh + cie + fmj + gkn + lqp

− (abc + dfge + lnm + hrpj + ikqs)
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Flips and mutations

We say that two non-degenerate ideal triangulations T1 and T2 are
related by a flip, if they differ locally in a quadrilateral by a flip of the
diagonal.

• •

••

flip−−→

• •

••

Lemma

If two non-degenerate ideal triangulations T1 and T2 are related by a
flip, then the corresponding quivers with potential (Q(T1), W (T1)) and
(Q(T2), W (T2)) are related by a mutation at the vertex corresponding
to the flipped edge.
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Problem with non-degenerate triangulations

It is not true that all non-degenerate triangulations are related by flips
through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal
triangulations and quivers with potential to the larger class of
triangulations containing vertices of valency 6 2, proving the much
more difficult result that mutations flips induce mutations in this general
context. His result applies to marked surface with boundary as well.

Since every ideal triangulation is connected by a finite chain of flips,
we find

Theorem (Labardini-Fragoso)

Let (S, M) be a marked bordered surface.
• There is an associated CY3 ∆-category D(S, M) of finite type.
• It has a canonical finite-length heart with finite simple objects,

defined up to tilts at simple objects.
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Summary

Distinguished component in Stab(D(S, M))

Let (S, M) be a marked bordered surface.
• There is an associated CY3 ∆-category D(S, M) of finite type
• The associated space of stability conditions Stab(D(S, M)) is a

complex manifold, with a distinguished connected component
Stab4(D(S, M)).

(We have to exclude from the statement some degenerate
topologies)

Next talk(s)...

Stab4(D(S, M))�Aut4(D(S, M))
∼= Quad♥(S, M),

and give a precise link between the trajectory structure of flat surfaces
and the theory of wall-crossing and DT invariants.
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Thank you!
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