Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces	

Stability conditions on quivers with potentials and triangulated surfaces

Alessandro Giacchetto

May 01, 2020

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
●0	00000000	0000000000	0000000	O
Goal				

- 1) define a CY₃ Δ -category $\mathcal{D}(S, M)$ associated to a marked bordered surface (S, M),
- 2) characterise the associated space of stability conditions in terms of meromorphic quadratic differentials on the surface:

$$\mathsf{Stab}_{\triangle}(\mathcal{D}(\mathcal{S}, \mathcal{M})) / \mathsf{Aut}_{\triangle}(\mathcal{D}(\mathcal{S}, \mathcal{M})) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, \mathcal{M}),$$

3) give a precise link between the trajectory structure of flat surfaces and the theory of wall-crossing and DT invariants.

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
●0	00000000	0000000000	0000000	O
Goal				

1) define a CY₃ Δ -category $\mathcal{D}(S, M)$ associated to a marked bordered surface (S, M),

2) characterise the associated space of stability conditions in terms of meromorphic quadratic differentials on the surface:

 $\operatorname{Stab}_{\bigtriangleup}(\mathcal{D}(S, M))$ $\operatorname{Aut}_{\bigtriangleup}(\mathcal{D}(S, M)) \cong \operatorname{Quad}_{\heartsuit}(S, M),$

3) give a precise link between the trajectory structure of flat surfaces and the theory of wall-crossing and DT invariants.

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
●0	00000000	0000000000	0000000	O
Goal				

- 1) define a CY₃ Δ -category $\mathcal{D}(S, M)$ associated to a marked bordered surface (S, M),
- 2) characterise the associated space of stability conditions in terms of meromorphic quadratic differentials on the surface:

$$\mathsf{Stab}_{\triangle}(\mathcal{D}(\mathcal{S}, \mathcal{M})) / \mathsf{Aut}_{\triangle}(\mathcal{D}(\mathcal{S}, \mathcal{M})) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, \mathcal{M}),$$

3) give a precise link between the trajectory structure of flat surfaces and the theory of wall-crossing and DT invariants.

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
●0	00000000	0000000000	0000000	O
Goal				

- 1) define a CY₃ Δ -category $\mathcal{D}(S, M)$ associated to a marked bordered surface (S, M),
- 2) characterise the associated space of stability conditions in terms of meromorphic quadratic differentials on the surface:

$$\mathsf{Stab}_{\triangle}(\mathcal{D}(\mathcal{S}, \mathcal{M})) / \mathsf{Aut}_{\triangle}(\mathcal{D}(\mathcal{S}, \mathcal{M})) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, \mathcal{M}),$$

3) give a precise link between the trajectory structure of flat surfaces and the theory of wall-crossing and DT invariants.

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
0●	00000000	0000000000	0000000	O
Plan of th	e talk			

Stability conditions and tilts

Quivers with potential

3 Triangulated surfaces

Ø Bibliography

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 0000000	

Let \mathcal{D} be a Δ -category s.t. $\mathcal{K}_0(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ is free of finite rank.

Definition

A stability condition on \mathcal{D} is a pair (Z, \mathcal{P}) , where

- $Z: K_0(\mathcal{D}) \to \mathbb{C}$ is group homomorphism (*central charge*)
- $\forall \varphi \in \mathbb{R}, \mathcal{P}(\varphi) \subset \mathcal{D}$ is a full subcategory (of semistable objects of phase φ)

- For all $0 \neq E \in \mathcal{P}(\phi)$, $Z(E) \in \mathbb{R}_+ e^{i\pi\phi}$
- $\mathcal{P}(\phi)[1] = \mathcal{P}(\phi+1)$
- For $\phi_1 > \phi_2$, then $Hom(\mathfrak{P}(\phi_1), \mathfrak{P}(\phi_2)) = 0$
- For all $0 \neq E \in \mathcal{D}$, $\exists (!)$ a Harder–Narasimhan filatration

Stability conditions and tilts ●0000000	Quivers with potential	Triangulated surfaces 000000	

Let \mathcal{D} be a Δ -category s.t. $\mathcal{K}_0(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ is free of finite rank.

Definition

A stability condition on \mathcal{D} is a pair (Z, \mathcal{P}) , where

- $Z: K_0(\mathcal{D}) \to \mathbb{C}$ is group homomorphism (*central charge*)
- $\forall \varphi \in \mathbb{R}, \mathcal{P}(\varphi) \subset \mathcal{D}$ is a full subcategory (of semistable objects of phase φ)

- For all $0 \neq E \in \mathcal{P}(\phi)$, $Z(E) \in \mathbb{R}_+ e^{i\pi\phi}$
- $\mathcal{P}(\boldsymbol{\varphi})[1] = \mathcal{P}(\boldsymbol{\varphi}+1)$
- For $\phi_1 > \phi_2$, then $Hom(\mathfrak{P}(\phi_1), \mathfrak{P}(\phi_2)) = 0$
- For all $0 \neq E \in \mathcal{D}$, $\exists (!)$ a Harder–Narasimhan filatration

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

Let \mathcal{D} be a Δ -category s.t. $\mathcal{K}_0(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ is free of finite rank.

Definition

A stability condition on \mathcal{D} is a pair (Z, \mathcal{P}) , where

- $Z: K_0(\mathfrak{D}) \to \mathbb{C}$ is group homomorphism (*central charge*)
- $\forall \varphi \in \mathbb{R}, \mathcal{P}(\varphi) \subset \mathcal{D}$ is a full subcategory (of semistable objects of phase φ)

- For all $0 \neq E \in \mathcal{P}(\phi)$, $Z(E) \in \mathbb{R}_+ e^{i\pi\phi}$
- $\mathcal{P}(\boldsymbol{\varphi})[1] = \mathcal{P}(\boldsymbol{\varphi}+1)$
- For $\phi_1 > \phi_2$, then $Hom(\mathfrak{P}(\phi_1), \mathfrak{P}(\phi_2)) = 0$
- For all $0 \neq E \in \mathcal{D}$, $\exists (!)$ a Harder–Narasimhan filatration

Stability conditions and tilts ●0000000	Quivers with potential	Triangulated surfaces 000000	

Let \mathcal{D} be a Δ -category s.t. $K_0(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ is free of finite rank.

Definition

A stability condition on \mathcal{D} is a pair (Z, \mathcal{P}) , where

- $Z: K_0(\mathcal{D}) \to \mathbb{C}$ is group homomorphism (*central charge*)
- $\forall \varphi \in \mathbb{R}, \mathfrak{P}(\varphi) \subset \mathfrak{D}$ is a full subcategory (of semistable objects of phase φ)

- For all $0 \neq E \in \mathcal{P}(\phi)$, $Z(E) \in \mathbb{R}_+ e^{i\pi\phi}$
- $\mathcal{P}(\boldsymbol{\phi})[\mathbf{1}] = \mathcal{P}(\boldsymbol{\phi} + \mathbf{1})$
- For $\phi_1 > \phi_2$, then $\text{Hom}(\mathfrak{P}(\phi_1), \mathfrak{P}(\phi_2)) = 0$
- For all $0 \neq E \in \mathcal{D}$, $\exists (!)$ a Harder–Narasimhan filatration

Stability conditions and tilts 0●000000	Quivers with potential	Triangulated surfaces 000000	

Space of stability conditions

Define the space of stability conditions on \mathcal{D} :

$$\mathsf{Stab}(\mathfrak{D}) \coloneqq \left\{ \left. (Z, \mathfrak{P}) \right| \begin{array}{c} \text{stability conditions on } \mathfrak{D} \\ \text{satisfying the support property} \end{array} \right\}.$$

Theorem (Bridgeland)

The space $\mathsf{Stab}(\mathcal{D})$ has a natural Hausdorff topology, and the forgetful map

$$\operatorname{Stab}(\mathcal{D}) \longrightarrow \operatorname{Hom}(K_0(\mathcal{D}), \mathbb{C}) \cong \mathbb{C}^n, \qquad (Z, \mathcal{P}) \longmapsto Z$$

is a local homeomorphism. In particular, the space of stability conditions is an *n*-dimensional complex manifold.

Stability conditions and tilts 0●000000	Quivers with potential 000000000	Triangulated surfaces	

Space of stability conditions

Define the space of stability conditions on \mathcal{D} :

$$\mathsf{Stab}(\mathfrak{D}) \coloneqq \left\{ \left. (Z, \mathfrak{P}) \right| \begin{array}{c} \text{stability conditions on } \mathfrak{D} \\ \text{satisfying the support property} \end{array} \right\}.$$

Theorem (Bridgeland)

The space $\mathsf{Stab}(\mathcal{D})$ has a natural Hausdorff topology, and the forgetful map

$$\mathsf{Stab}(\mathcal{D}) \longrightarrow \mathsf{Hom}(\mathcal{K}_0(\mathcal{D}), \mathbb{C}) \cong \mathbb{C}^n, \qquad (Z, \mathcal{P}) \longmapsto Z$$

is a local homeomorphism. In particular, the space of stability conditions is an *n*-dimensional complex manifold.

Stability conditions and tilts	Quivers with potential 0000000000	Triangulated surfaces	

Definition

A t-structure on \mathcal{D} is a pair $(\mathcal{D}^{\geq 0}, \mathcal{D}^{\leq 0})$ of full subcategories, satisfying the following axioms

- $\mathcal{D}^{\geq 1} \coloneqq \mathcal{D}^{\geq 0}[-1] \subset \mathcal{D}^{\geq 0}$
- $\operatorname{Hom}(\mathcal{D}^{\leqslant 0}, \mathcal{D}^{\geqslant 1}) = 0$
- Any $0 \neq E \in \mathcal{D}$ fits in a DT $E^{\leqslant 0} \rightarrow E \rightarrow E^{\geqslant 1} \rightarrow E^{\leqslant 0}[1]$

A t-structure is bounded if $\mathcal{D} = \bigcup_n \mathcal{D}^{\ge -n} \cap \mathcal{D}^{\le -n}$. The heart of a t-structure is $\mathcal{D}^{\heartsuit} := \mathcal{D}^{\le 0} \cap \mathcal{D}^{\ge 0}$.

Facts:

- 1) The heart of a t-structure is an abelian category
- 2) A bounded t-structure is determined by its heart
- 3) Every stability condition (Z, \mathcal{P}) on \mathcal{D} has an associated heart

Stability conditions and tilts	Quivers with potential 0000000000	Triangulated surfaces	

Definition

A t-structure on \mathcal{D} is a pair $(\mathcal{D}^{\geq 0}, \mathcal{D}^{\leq 0})$ of full subcategories, satisfying the following axioms

- $\mathcal{D}^{\geq 1} \coloneqq \mathcal{D}^{\geq 0}[-1] \subset \mathcal{D}^{\geq 0}$
- $\operatorname{Hom}(\mathcal{D}^{\leqslant 0}, \mathcal{D}^{\geqslant 1}) = 0$
- Any $0 \neq E \in \mathcal{D}$ fits in a DT $E^{\leqslant 0} \rightarrow E \rightarrow E^{\geqslant 1} \rightarrow E^{\leqslant 0}[1]$

A t-structure is bounded if $\mathcal{D} = \bigcup_n \mathcal{D}^{\ge -n} \cap \mathcal{D}^{\le -n}$. The heart of a t-structure is $\mathcal{D}^{\heartsuit} := \mathcal{D}^{\le 0} \cap \mathcal{D}^{\ge 0}$.

Facts:

- 1) The heart of a t-structure is an abelian category
- 2) A bounded t-structure is determined by its heart
- 3) Every stability condition (Z, \mathcal{P}) on \mathcal{D} has an associated heart

Stability conditions and tilts	Quivers with potential 0000000000	Triangulated surfaces	

Definition

A t-structure on \mathcal{D} is a pair $(\mathcal{D}^{\geq 0}, \mathcal{D}^{\leq 0})$ of full subcategories, satisfying the following axioms

- $\mathcal{D}^{\geq 1} \coloneqq \mathcal{D}^{\geq 0}[-1] \subset \mathcal{D}^{\geq 0}$
- $\operatorname{Hom}(\mathcal{D}^{\leqslant 0}, \mathcal{D}^{\geqslant 1}) = 0$
- Any $0 \neq E \in \mathcal{D}$ fits in a DT $E^{\leqslant 0} \rightarrow E \rightarrow E^{\geqslant 1} \rightarrow E^{\leqslant 0}[1]$

A t-structure is bounded if $\mathcal{D} = \bigcup_n \mathcal{D}^{\geq -n} \cap \mathcal{D}^{\leq -n}$.

The heart of a t-structure is $\mathcal{D}^{\heartsuit} := \mathcal{D}^{\leqslant 0} \cap \mathcal{D}^{\geqslant 0}$.

Facts:

- 1) The heart of a t-structure is an abelian category
- 2) A bounded t-structure is determined by its heart
- 3) Every stability condition (Z, \mathcal{P}) on \mathcal{D} has an associated heart

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 0000000	

Definition

A t-structure on \mathcal{D} is a pair $(\mathcal{D}^{\geq 0}, \mathcal{D}^{\leq 0})$ of full subcategories, satisfying the following axioms

- $\mathcal{D}^{\geq 1} \coloneqq \mathcal{D}^{\geq 0}[-1] \subset \mathcal{D}^{\geq 0}$
- $\operatorname{Hom}(\mathcal{D}^{\leqslant 0}, \mathcal{D}^{\geqslant 1}) = 0$
- Any $0 \neq E \in \mathcal{D}$ fits in a DT $E^{\leqslant 0} \rightarrow E \rightarrow E^{\geqslant 1} \rightarrow E^{\leqslant 0}[1]$

A t-structure is bounded if $\mathcal{D} = \bigcup_n \mathcal{D}^{\ge -n} \cap \mathcal{D}^{\le -n}$. The heart of a t-structure is $\mathcal{D}^{\heartsuit} := \mathcal{D}^{\le 0} \cap \mathcal{D}^{\ge 0}$.

Facts:

- 1) The heart of a t-structure is an abelian category
- 2) A bounded t-structure is determined by its heart
- 3) Every stability condition (Z, \mathcal{P}) on \mathcal{D} has an associated heart

Stability conditions and tilts	Quivers with potential 0000000000	Triangulated surfaces	

Definition

A t-structure on \mathcal{D} is a pair $(\mathcal{D}^{\geq 0}, \mathcal{D}^{\leq 0})$ of full subcategories, satisfying the following axioms

- $\mathcal{D}^{\geq 1} \coloneqq \mathcal{D}^{\geq 0}[-1] \subset \mathcal{D}^{\geq 0}$
- $\operatorname{Hom}(\mathcal{D}^{\leqslant 0}, \mathcal{D}^{\geqslant 1}) = 0$
- Any $0 \neq E \in \mathcal{D}$ fits in a DT $E^{\leqslant 0} \rightarrow E \rightarrow E^{\geqslant 1} \rightarrow E^{\leqslant 0}[1]$

A t-structure is bounded if $\mathcal{D} = \bigcup_n \mathcal{D}^{\ge -n} \cap \mathcal{D}^{\le -n}$. The heart of a t-structure is $\mathcal{D}^{\heartsuit} := \mathcal{D}^{\le 0} \cap \mathcal{D}^{\ge 0}$.

Facts:

- 1) The heart of a t-structure is an abelian category
- 2) A bounded t-structure is determined by its heart
- 3) Every stability condition (Z, \mathcal{P}) on \mathcal{D} has an associated heart

	Stability conditions and tilts		Quivers with potential 000000000		Triangulated sur 0000000	

Hearts of stability conditions as chambers

Let $\mathcal{A} \subset \mathcal{D}$ be a heart satisfying some finiteness assumptions:

- *A* is a finite-length heart, *i.e.* is artinian and noetherian as abelian category,
- \mathcal{A} has *n* simple objects S_1, \ldots, S_n .

Denote by $Stab(\mathcal{A}) \subset Stab(\mathcal{D})$ the subset of consisting of those stability conditions whose heart is \mathcal{A} . The forgetful map is a bijection

 $\mathsf{Stab}(\mathcal{A}) \cong \left\{ Z \in \mathsf{Hom}(K_0(\mathcal{D}), \mathbb{C}) \mid Z(S_i) \in \bar{\mathbb{H}} \right\} \cong \bar{\mathbb{H}}^n, \quad \mathbb{H} \cup \mathbb{R}_{<0}.$

In other words every heart determines a chamber in $Stab(\mathcal{D})$.

The way this cells are glued together is well-described by by means of tilts at simple objects.

	an Stability conditions and tilts			Triangula 00000		
	<i>c</i> .					

Hearts of stability conditions as chambers

Let $\mathcal{A} \subset \mathcal{D}$ be a heart satisfying some finiteness assumptions:

- *A* is a finite-length heart, *i.e.* is artinian and noetherian as abelian category,
- \mathcal{A} has *n* simple objects S_1, \ldots, S_n .

Denote by $Stab(\mathcal{A}) \subset Stab(\mathcal{D})$ the subset of consisting of those stability conditions whose heart is \mathcal{A} . The forgetful map is a bijection

 $\mathsf{Stab}(\mathcal{A}) \cong \left\{ Z \in \mathsf{Hom}(\mathcal{K}_0(\mathcal{D}), \mathbb{C}) \mid Z(\mathcal{S}_i) \in \overline{\mathbb{H}} \right\} \cong \overline{\mathbb{H}}^n, \quad \mathbb{H} \cup \mathbb{R}_{<0}.$

In other words every heart determines a chamber in $Stab(\mathcal{D})$.

The way this cells are glued together is well-described by by means of tilts at simple objects.

	Stability conditions and tilts 000●0000		Triangulated surfaces	

Hearts of stability conditions as chambers

Let $\mathcal{A} \subset \mathcal{D}$ be a heart satisfying some finiteness assumptions:

- *A* is a finite-length heart, *i.e.* is artinian and noetherian as abelian category,
- \mathcal{A} has *n* simple objects S_1, \ldots, S_n .

Denote by $Stab(\mathcal{A}) \subset Stab(\mathcal{D})$ the subset of consisting of those stability conditions whose heart is \mathcal{A} . The forgetful map is a bijection

```
\mathsf{Stab}(\mathcal{A}) \cong \left\{ Z \in \mathsf{Hom}(\mathcal{K}_0(\mathcal{D}), \mathbb{C}) \mid Z(\mathcal{S}_i) \in \overline{\mathbb{H}} \right\} \cong \overline{\mathbb{H}}^n, \quad \mathbb{H} \cup \mathbb{R}_{<0}.
```

In other words every heart determines a chamber in $Stab(\mathcal{D})$.

The way this cells are glued together is well-described by by means of tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces	

Tilts from torsion pairs

Definition

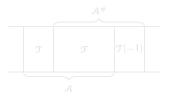
Let ${\cal A}$ be an abelian category. A torsion pair for ${\cal A}$ is a pair of full subcategories $({\mathfrak T},{\mathfrak F})$ such that

- $\operatorname{Hom}(\mathfrak{T},\mathfrak{F})=0$,
- For all $E \in A$, there exists a SES $0 \rightarrow T \rightarrow E \rightarrow F \rightarrow 0$ with $T \in T$ and $F \in \mathcal{F}$.

Fact: if $\mathcal{A} \subset \mathcal{D}$ is a heart and $(\mathfrak{T}, \mathfrak{F})$ is a torsion pair for \mathcal{A} , then

 $\mathcal{A}^{\#} \coloneqq \langle \mathcal{F}, \mathfrak{T}[-1] \rangle \subset \mathcal{D}$

is again a heart for \mathcal{D} , called the tilt of \mathcal{A} .



Stability conditions and tilts 00000000	Quivers with potential 000000000	Triangulated surfaces	

Tilts from torsion pairs

Definition

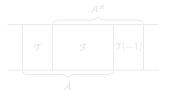
Let ${\cal A}$ be an abelian category. A torsion pair for ${\cal A}$ is a pair of full subcategories $({\mathfrak T},{\mathfrak F})$ such that

- $\operatorname{Hom}(\mathfrak{T}, \mathfrak{F}) = 0$,
- For all $E \in A$, there exists a SES $0 \rightarrow T \rightarrow E \rightarrow F \rightarrow 0$ with $T \in T$ and $F \in \mathcal{F}$.

Fact: if $\mathcal{A} \subset \mathcal{D}$ is a heart and $(\mathfrak{T}, \mathfrak{F})$ is a torsion pair for \mathcal{A} , then

$$\mathcal{A}^{\#} \coloneqq \langle \mathfrak{F}, \mathfrak{T}[-1] \rangle \subset \mathcal{D}$$

is again a heart for \mathcal{D} , called the tilt of \mathcal{A} .



Stability conditions and tilts 00000000	Quivers with potential 000000000	Triangulated surfaces	

Tilts from torsion pairs

Definition

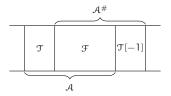
Let ${\cal A}$ be an abelian category. A torsion pair for ${\cal A}$ is a pair of full subcategories $({\mathfrak T},{\mathfrak F})$ such that

- $\operatorname{Hom}(\mathfrak{T},\mathfrak{F})=0$,
- For all $E \in A$, there exists a SES $0 \rightarrow T \rightarrow E \rightarrow F \rightarrow 0$ with $T \in T$ and $F \in \mathcal{F}$.

Fact: if $\mathcal{A} \subset \mathcal{D}$ is a heart and $(\mathfrak{T}, \mathfrak{F})$ is a torsion pair for \mathcal{A} , then

$$\mathcal{A}^{\#} \coloneqq \langle \mathfrak{F}, \mathfrak{T}[-1] \rangle \subset \mathcal{D}$$

is again a heart for \mathcal{D} , called the tilt of \mathcal{A} .



Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 000000	

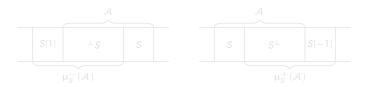
Suppose that A is a finite-length heart and $S \in A$ is a simple object. Let $\langle S \rangle \subset A$ be the full subcategory consisting of objects whose simple factors are isomorphic to S. Define the full subcategories

 $S^{\perp} \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(S, A) = 0 \}, \qquad {}^{\perp}S \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(A, S) = 0 \}.$

emma

 $(\langle S \rangle, S^{\perp})$ and $({}^{\perp}S, \langle S \rangle)$ are torsion pairs for A. In other words,

 $\mu_{S}^{-}(\mathcal{A}) \coloneqq \langle S[1], {}^{\perp}S \rangle, \qquad \mu_{S}^{+}(\mathcal{A}) \coloneqq \langle S^{\perp}, S[-1] \rangle$



Stability conditions and tilts 00000●00	Quivers with potential 000000000	Triangulated surfaces	

Suppose that A is a finite-length heart and $S \in A$ is a simple object. Let $\langle S \rangle \subset A$ be the full subcategory consisting of objects whose simple factors are isomorphic to S. Define the full subcategories

 $S^{\perp} \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(S, A) = 0 \}, \qquad {}^{\perp}S \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(A, S) = 0 \}.$

Lemma

 $(\langle S \rangle, S^{\perp})$ and $({}^{\perp}S, \langle S \rangle)$ are torsion pairs for A. In other words,

$$\mu_{S}^{-}(\mathcal{A}) \coloneqq \langle S[1], {}^{\perp}S \rangle, \qquad \mu_{S}^{+}(\mathcal{A}) \coloneqq \langle S^{\perp}, S[-1] \rangle$$

Stability conditions and tilts 00000●00	Quivers with potential 000000000	Triangulated surfaces	

Suppose that A is a finite-length heart and $S \in A$ is a simple object. Let $\langle S \rangle \subset A$ be the full subcategory consisting of objects whose simple factors are isomorphic to S. Define the full subcategories

 $S^{\perp} \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(S, A) = 0 \}, \qquad {}^{\perp}S \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(A, S) = 0 \}.$

Lemma

 $(\langle S \rangle, S^{\perp})$ and $({}^{\perp}S, \langle S \rangle)$ are torsion pairs for A. In other words,

$$\mu_{S}^{-}(\mathcal{A}) \coloneqq \langle S[1], {}^{\perp}S \rangle, \qquad \mu_{S}^{+}(\mathcal{A}) \coloneqq \langle S^{\perp}, S[-1] \rangle$$

Stability conditions and tilts 00000●00	Quivers with potential 000000000	Triangulated surfaces	

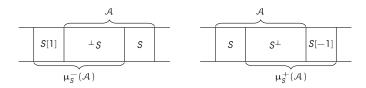
Suppose that A is a finite-length heart and $S \in A$ is a simple object. Let $\langle S \rangle \subset A$ be the full subcategory consisting of objects whose simple factors are isomorphic to S. Define the full subcategories

 $S^{\perp} \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(S, A) = 0 \}, \qquad {}^{\perp}S \coloneqq \{ A \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(A, S) = 0 \}.$

Lemma

 $(\langle S \rangle, S^{\perp})$ and $({}^{\perp}S, \langle S \rangle)$ are torsion pairs for A. In other words,

$$\mu_{S}^{-}(\mathcal{A}) \coloneqq \langle S[1], {}^{\perp}S \rangle, \qquad \mu_{S}^{+}(\mathcal{A}) \coloneqq \langle S^{\perp}, S[-1] \rangle$$



Stability conditions and tilts	Triangulated surfaces	Bibliography
00000000		

Tilts and spaces of stability conditions

Tilts at simple objects controls how the chambers $\mathsf{Stab}(\mathcal{A})$ are glued together.

Proposition (Bridgeland)

Let $\mathcal{A} \subset \mathcal{D}$ be a finite-length heart with *n* simple objects S_1, \ldots, S_n , and suppose that (Z, \mathcal{P}) is a stability condition lying in a codim-1 wall of the chamber Stab (\mathcal{A}) , *i.e.* Im $Z(S_i) = 0$ for a unique simple object S_i . Assume that the tilts $\mu_{S_i}^{\pm}(\mathcal{A})$ are also of finite-length. Then there exists a neighbourhood $U \subset \text{Stab}(\mathcal{D})$ of (Z, \mathcal{P}) such that

- $Z(S_i) \in \mathbb{R}_{<0}$ implies $U \subset \text{Stab}(\mathcal{A}) \cup \text{Stab}(\mu_{S_i}^-(\mathcal{A}))$,
- $Z(S_i) \in \mathbb{R}_{>0}$ implies $U \subset \text{Stab}(\mathcal{A}) \cup \text{Stab}(\mu_{S_i}^+(\mathcal{A}))$.

Stability conditions and tilts 000000€0	Quivers with potential	Triangulated surfaces 000000	

Tilts and spaces of stability conditions

Tilts at simple objects controls how the chambers $\mathsf{Stab}(\mathcal{A})$ are glued together.

Proposition (Bridgeland)

Let $\mathcal{A} \subset \mathcal{D}$ be a finite-length heart with *n* simple objects S_1, \ldots, S_n , and suppose that (Z, \mathcal{P}) is a stability condition lying in a codim-1 wall of the chamber Stab (\mathcal{A}) , *i.e.* Im $Z(S_i) = 0$ for a unique simple object S_i . Assume that the tilts $\mu_{S_i}^{\pm}(\mathcal{A})$ are also of finite-length. Then there exists a neighbourhood $U \subset \text{Stab}(\mathcal{D})$ of (Z, \mathcal{P}) such that

- $Z(S_i) \in \mathbb{R}_{<0}$ implies $U \subset \text{Stab}(\mathcal{A}) \cup \text{Stab}(\mu_{S_i}^-(\mathcal{A}))$,
- $Z(S_i) \in \mathbb{R}_{>0}$ implies $U \subset \text{Stab}(\mathcal{A}) \cup \text{Stab}(\mu_{S_i}^+(\mathcal{A}))$.

Stability conditions and tilts 000000●0	Quivers with potential	Triangulated surfaces 000000	

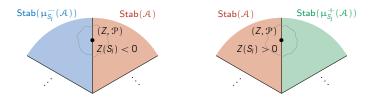
Tilts and spaces of stability conditions

Tilts at simple objects controls how the chambers $\mathsf{Stab}(\mathcal{A})$ are glued together.

Proposition (Bridgeland)

Let $\mathcal{A} \subset \mathcal{D}$ be a finite-length heart with *n* simple objects S_1, \ldots, S_n , and suppose that (Z, \mathcal{P}) is a stability condition lying in a codim-1 wall of the chamber Stab (\mathcal{A}) , *i.e.* Im $Z(S_i) = 0$ for a unique simple object S_i . Assume that the tilts $\mu_{S_i}^{\pm}(\mathcal{A})$ are also of finite-length. Then there exists a neighbourhood $U \subset \text{Stab}(\mathcal{D})$ of (Z, \mathcal{P}) such that

- $Z(S_i) \in \mathbb{R}_{<0}$ implies $U \subset \text{Stab}(\mathcal{A}) \cup \text{Stab}(\mu_{S_i}^-(\mathcal{A}))$,
- $Z(S_i) \in \mathbb{R}_{>0}$ implies $U \subset \text{Stab}(\mathcal{A}) \cup \text{Stab}(\mu_{S_i}^+(\mathcal{A}))$.



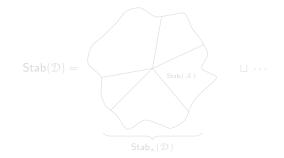
Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces	

Summary

Distinguished components in $\mathsf{Stab}(\mathcal{D})$

Let \mathcal{D} be a Δ -category equipped with a finite-length heart \mathcal{A} with n simple objects, defined up to tilts at simple objects.

Then $\operatorname{Stab}(\mathcal{D})$ is a complex manifold of dimension n, equipped with a distinguished connected component $\operatorname{Stab}_*(\mathcal{D}) \subset \operatorname{Stab}(\mathcal{D})$.



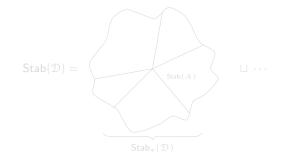
Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces	

Summary

Distinguished components in $\mathsf{Stab}(\mathcal{D})$

Let \mathcal{D} be a Δ -category equipped with a finite-length heart \mathcal{A} with n simple objects, defined up to tilts at simple objects.

Then $\operatorname{Stab}(\mathcal{D})$ is a complex manifold of dimension n, equipped with a distinguished connected component $\operatorname{Stab}_*(\mathcal{D}) \subset \operatorname{Stab}(\mathcal{D})$.



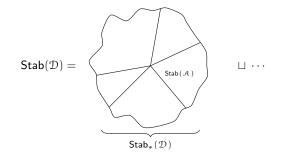
Stability conditions and tilts 0000000●	Quivers with potential 000000000	Triangulated surfaces	

Summary

Distinguished components in $Stab(\mathcal{D})$

Let \mathcal{D} be a Δ -category equipped with a finite-length heart \mathcal{A} with n simple objects, defined up to tilts at simple objects.

Then $\operatorname{Stab}(\mathcal{D})$ is a complex manifold of dimension n, equipped with a distinguished connected component $\operatorname{Stab}_*(\mathcal{D}) \subset \operatorname{Stab}(\mathcal{D})$.



Stability conditions and tilts	Quivers with potential •00000000	Triangulated surfaces 000000	

Quivers

Definition

A quiver Q is a finite oriented graph. It is given by

- a finite set Q_0 (vertices),
- a finite set Q1 (arrows),
- two maps $s: Q_1 \to Q_0$ (taking an arrow to its source) $t: Q_1 \to Q_0$ (taking an arrow to its target).

A simple example is the \vec{A}_n quiver, which is an orientation of the A_n Dynkin diagram:

$$\vec{A}_n = 1 \leftarrow 2 \leftarrow \cdots \leftarrow n-1 \leftarrow n$$

Stability conditions and tilts	Quivers with potential •00000000	Triangulated surfaces	

Quivers

Definition

A quiver Q is a finite oriented graph. It is given by

- a finite set Q_0 (vertices),
- a finite set Q1 (arrows),
- two maps $s: Q_1 \to Q_0$ (taking an arrow to its source) $t: Q_1 \to Q_0$ (taking an arrow to its target).

A simple example is the \vec{A}_n quiver, which is an orientation of the A_n Dynkin diagram:

$$\vec{A}_n = 1 \leftarrow 2 \leftarrow \cdots \leftarrow n-1 \leftarrow n$$

Stability conditions and tilts	Quivers with potential 0●00000000	Triangulated surfaces 0000000	

Mutation of quivers

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

Fix $i \in Q_0$. The mutation $\mu_i(Q)$ is the quiver obtained from Q as follows.

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Stability conditions and tilts 00000000	Quivers with potential 000000000	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Stability conditions and tilts	Quivers with potential 0●00000000	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

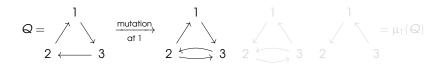
- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

Stability conditions and tilts	Quivers with potential	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

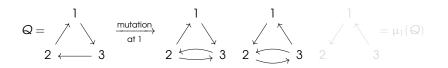


Stability conditions and tilts 00000000	Quivers with potential 0●00000000	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

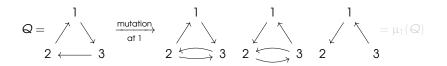


Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.

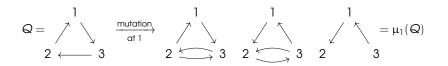


Stability conditions and tilts 00000000	Quivers with potential 0●00000000	Triangulated surfaces	

A natural operation on quivers is that of mutation at vertices, defined by Fomin–Zelevinsky. From now on, we assume that Q has no loops or 2-cycles.

Definition

- For each subquiver $j \xrightarrow{b} i \xrightarrow{a} k$, add a new arrow $j \xrightarrow{[ab]} k$.
- Reverse all arrows incident to *i*.
- Remove the arrows in a maximal set of pairwise disjoint 2-cycles.



	Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000		
The second data with a large second					

The complete path algebra

A natural object one can attach to a quiver Q is its complete path algebra: fix an algebraically closed field k, and set

$\widehat{kQ} \coloneqq \prod_{p \text{ path}} kp.$

Consider its bounded derived category $\mathcal{D}^{b}(Mod(\widehat{kQ}))$. One would like to obtain linear equivalences of this category under mutations, but it turns out that this is not the case.

Hint from physics

Consider quivers with potential, their associated category and their mutations.

Goal and plan 00	Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	
The comp	olete path algebro	۲		

A natural object one can attach to a quiver Q is its complete path algebra: fix an algebraically closed field k, and set

$$\widehat{kQ} \coloneqq \prod_{p \text{ path}} kp.$$

Consider its bounded derived category $\mathcal{D}^{b}(Mod(\widehat{kQ}))$. One would like to obtain linear equivalences of this category under mutations, but it turns out that this is not the case.

Hint from physics

Consider quivers with potential, their associated category and their mutations.

Goal and plan 00	Stability conditions and tilts 00000000	Quivers with potential 000000000	Triangulated surfaces 0000000	Bibliography O	
The complete path algebra					

ine complete path algebra

A natural object one can attach to a quiver Q is its complete path algebra: fix an algebraically closed field k, and set

 $\widehat{kQ} \coloneqq \prod_{p \text{ path}} kp.$

Consider its bounded derived category $\mathcal{D}^{b}(Mod(\widehat{kQ}))$. One would like to obtain linear equivalences of this category under mutations, but it turns out that this is not the case.

Hint from physics

Consider quivers with potential, their associated category and their mutations.

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

Quivers with potential

Consider

$$HH_0(\mathbf{Q}) \coloneqq \frac{\widehat{kQ}}{[\widehat{kQ},\widehat{kQ}]},$$

that is the set of infinite linear combination of cycles of Q. For each arrow $a \in Q_1$, we have the cyclic derivative ϑ_a : $HH_0(Q) \rightarrow \widehat{kQ}$ such that any path p,

$$\partial_a p \coloneqq \sum_{p=uav} vu.$$

A potential on Q is an element $W \in HH_0(Q)$ not involving cycles of length 0.

An example of quiver with potential is

$$Q = \int_{2}^{b} \int_{-\infty}^{1} \int_{-\infty}^{a} W = abc$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000	

Quivers with potential

Consider

$$HH_0(\mathbf{Q}) \coloneqq \frac{\widehat{kQ}}{[\widehat{kQ},\widehat{kQ}]},$$

that is the set of infinite linear combination of cycles of Q. For each arrow $a \in Q_1$, we have the cyclic derivative ϑ_a : $HH_0(Q) \rightarrow \widehat{kQ}$ such that any path p,

$$\partial_a p \coloneqq \sum_{p=uav} vu.$$

A potential on Q is an element $W \in HH_0(Q)$ not involving cycles of length 0.

An example of quiver with potential is

$$Q = \int_{2}^{b} \int_{-\infty}^{1} \int_{a}^{a} W = abc$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000	

Quivers with potential

Consider

$$HH_0(\mathbf{Q}) \coloneqq \frac{\widehat{kQ}}{[\widehat{kQ},\widehat{kQ}]},$$

that is the set of infinite linear combination of cycles of Q. For each arrow $a \in Q_1$, we have the cyclic derivative ϑ_a : $HH_0(Q) \rightarrow \widehat{kQ}$ such that any path p,

$$\partial_a p \coloneqq \sum_{p=uav} vu.$$

A potential on Q is an element $W \in HH_0(Q)$ not involving cycles of length 0.

An example of quiver with potential is

$$Q = \int_{a}^{b} \sqrt{\frac{1}{a}} \qquad W = abc$$

	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	
Mutation	s of a uivers with pa	otential		

Derksen–Weyman–Zelevinsky showed that mutations can be extended to quivers with potentials in a nice way.

Theorem (Derksen–Weyman–Zelevinsky)

The mutation operation $\mathcal{Q}\mapsto \mu_i(\mathcal{Q})$ admits a good extension to quivers with potentials

 $(Q, W) \mapsto \mu_i(Q, W) \coloneqq (Q', W'),$

i.e. $\mu_i(Q)$ is isomorphic to the quiver Q' if W is generic.

$$Q = \int_{a}^{b} \sqrt[7]{a} \quad W = abc \quad \xrightarrow{\text{mutation}}_{at 1} \quad Q' = \int_{a}^{1} \sqrt[7]{a} \quad W' = 0$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000	

Derksen–Weyman–Zelevinsky showed that mutations can be extended to quivers with potentials in a nice way.

Theorem (Derksen–Weyman–Zelevinsky)

The mutation operation $Q \mapsto \mu_i(Q)$ admits a good extension to quivers with potentials

$$(Q, W) \mapsto \mu_i(Q, W) \coloneqq (Q', W'),$$

i.e. $\mu_i(Q)$ is isomorphic to the quiver Q' if W is generic.

$$Q = \bigvee_{a \neq a}^{b} \bigvee_{a}^{a} \qquad W = abc \qquad \xrightarrow{\text{mutation}}_{at 1} \qquad Q' = \bigvee_{a \neq a}^{b} \bigvee_{a \neq a}^{b} \qquad W' = 0$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000	

Derksen–Weyman–Zelevinsky showed that mutations can be extended to quivers with potentials in a nice way.

Theorem (Derksen–Weyman–Zelevinsky)

The mutation operation $\mathcal{Q}\mapsto \mu_i(\mathcal{Q})$ admits a good extension to quivers with potentials

$$(Q, W) \mapsto \mu_i(Q, W) \coloneqq (Q', W'),$$

i.e. $\mu_i(Q)$ is isomorphic to the quiver Q' if W is generic.

$$Q = \int_{2}^{b} \sqrt[7]{a} \quad W = abc \quad \xrightarrow{\text{mutation}}_{at 1} \quad Q' = \int_{2}^{1} \sqrt[7]{a} \quad W' = 0$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000	

Derksen–Weyman–Zelevinsky showed that mutations can be extended to quivers with potentials in a nice way.

Theorem (Derksen–Weyman–Zelevinsky)

The mutation operation $Q \mapsto \mu_i(Q)$ admits a good extension to quivers with potentials

$$(Q, W) \mapsto \mu_i(Q, W) \coloneqq (Q', W'),$$

i.e. $\mu_i(Q)$ is isomorphic to the quiver Q' if W is generic.

$$Q = \int_{a}^{b} \sqrt[7]{a} \quad W = abc \quad \xrightarrow{\text{mutation}}_{at 1} \quad Q' = \int_{a}^{1} \sqrt[7]{a} \quad W' = 0$$

$$2 \leftarrow \frac{1}{a} \quad 2 \quad 3$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000	

Derksen–Weyman–Zelevinsky showed that mutations can be extended to quivers with potentials in a nice way.

Theorem (Derksen–Weyman–Zelevinsky)

The mutation operation $\mathcal{Q}\mapsto \mu_i(\mathcal{Q})$ admits a good extension to quivers with potentials

$$(Q, W) \mapsto \mu_i(Q, W) \coloneqq (Q', W'),$$

i.e. $\mu_i(Q)$ is isomorphic to the quiver Q' if W is generic.

$$Q = \bigvee_{a \neq a}^{b} \bigvee_{a}^{a} \qquad W = abc \qquad \xrightarrow{\text{mutation}}_{at 1} \qquad Q' = \bigvee_{a \neq a}^{b} \bigvee_{a \neq b}^{a} \qquad W' = 0$$

Stability conditions and tilts 00000000	Quivers with potential	Triangulated surfaces	

The complete Ginzburg algebra

Definition

Let (Q, W) be a quiver with potential. Define a new quiver \tilde{Q} , with $\tilde{Q}_0 = Q_0$ and graded arrow as follows:

- the arrows of Q in degree 0,
- a new arrow $a^*: j \rightarrow i$ of degree -1 for each $a: i \rightarrow j$ of Q,
- a loop $t_i: i \rightarrow i$ of degree -2 for each vertex i of Q.

Define the complete Ginzburg algebra $\Gamma(Q, W) := kQ$, endowed with the unique *d* of degree 1 such that

- d(a) = 0 for each arrow a of Q,
- $d(a^*) = \partial_a W$ for each arrow a of Q,
- $d(t_i) = e_i(\sum_{a \in Q_1} [a, a^*])e_i$ for each vertex *i* of Q, where e_i is the lazy path at *i*.

Stability conditions and tilts 00000000	Quivers with potential	Triangulated surfaces	

The complete Ginzburg algebra

Definition

Let (Q, W) be a quiver with potential. Define a new quiver \tilde{Q} , with $\tilde{Q}_0 = Q_0$ and graded arrow as follows:

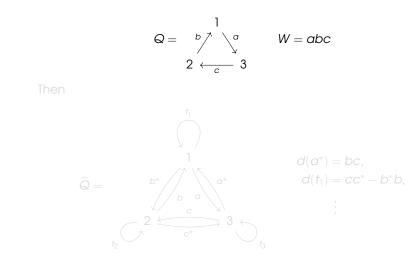
- the arrows of Q in degree 0,
- a new arrow $a^*: j \rightarrow i$ of degree -1 for each $a: i \rightarrow j$ of Q,
- a loop $t_i: i \rightarrow i$ of degree -2 for each vertex i of Q.

Define the complete Ginzburg algebra $\Gamma(Q, W) := k\overline{Q}$, endowed with the unique *d* of degree 1 such that

- d(a) = 0 for each arrow a of Q,
- $d(a^*) = \partial_a W$ for each arrow a of Q,
- $d(t_i) = e_i(\sum_{\alpha \in Q_1} [\alpha, \alpha^*])e_i$ for each vertex *i* of Q, where e_i is the lazy path at *i*.

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

An example

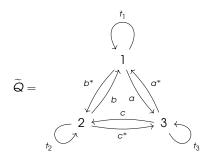


Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

An example

 $Q = \int_{c}^{b} \int_{c}^{1} \int_{a}^{a} W = abc$ $2 \leftarrow c 3$

Then



 $d(a^*) = bc,$ $d(t_1) = cc^* - b^*b,$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

An example

Then

 $Q = \frac{1}{2 \leftarrow c} 3 \qquad W = abc$ $Q = \frac{1}{2 \leftarrow c} 3 \qquad W = abc$ $Q = \frac{1}{2 \leftarrow c} 3 \qquad W = abc$ $Q = \frac{1}{2 \leftarrow c} 3 \qquad W = abc$ $Q = \frac{1}{2 \leftarrow c} 3 \qquad W = abc$

$$\widetilde{Q} = \underbrace{\begin{array}{c} & & & \\ & & & & \\ & & & \\ &$$

 $d(a^*) = bc,$ $d(t_1) = cc^* - b^*b,$

÷

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

The main result we need here is due to Keller and Yang.

Theorem (Keller-Yang)

Fix a quiver with potential (Q, W), and consider the Δ -category $\mathcal{D}(Q, W) \coloneqq \mathcal{D}^{b}(dg-Mod(\Gamma(Q, W))).$

- $\mathcal{D}(Q, W)$ is of finite type over k and CY₃.
- D(Q, W) has a canonical bounded t-structure, whose heart A(Q, W) is the category of finite-dimensional modules over the complete Jacobi algebra

$$J(\mathcal{Q}, W) \coloneqq \frac{\widehat{kQ}}{(\partial_{\alpha}W \mid \alpha \in Q_1)}.$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

The main result we need here is due to Keller and Yang.

Theorem (Keller-Yang)

Fix a quiver with potential (Q, W), and consider the Δ -category $\mathcal{D}(Q, W) \coloneqq \mathcal{D}^{b}(dg-Mod(\Gamma(Q, W))).$

- $\mathcal{D}(Q, W)$ is of finite type over k and CY₃.
- D(Q, W) has a canonical bounded t-structure, whose heart A(Q, W) is the category of finite-dimensional modules over the complete Jacobi algebra

$$J(\mathcal{Q}, W) \coloneqq \frac{\widehat{kQ}}{(\partial_{\alpha}W \mid \alpha \in Q_1)}.$$

00 000000	00 00	000000000000000000000000000000000000000	

The main result we need here is due to Keller and Yang.

Theorem (Keller-Yang)

Fix a quiver with potential (Q, W), and consider the Δ -category $\mathcal{D}(Q, W) \coloneqq \mathcal{D}^{b}(dg-Mod(\Gamma(Q, W))).$

- $\mathcal{D}(Q, W)$ is of finite type over k and CY₃.
- D(Q, W) has a canonical bounded t-structure, whose heart A(Q, W) is the category of finite-dimensional modules over the complete Jacobi algebra

$$J(\mathcal{Q}, W) \coloneqq \frac{\widehat{kQ}}{(\partial_{\alpha}W \mid \alpha \in Q_1)}.$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

The main result we need here is due to Keller and Yang.

Theorem (Keller-Yang)

Fix a quiver with potential (Q, W), and consider the Δ -category $\mathcal{D}(Q, W) \coloneqq \mathcal{D}^{b}(dg-Mod(\Gamma(Q, W))).$

- $\mathcal{D}(Q, W)$ is of finite type over k and CY₃.
- D(Q, W) has a canonical bounded t-structure, whose heart A(Q, W) is the category of finite-dimensional modules over the complete Jacobi algebra

$$J(\mathcal{Q}, W) \coloneqq \frac{\widehat{kQ}}{(\partial_{\alpha}W \mid \alpha \in Q_1)}.$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

The main result we need here is due to Keller and Yang.

Theorem (Keller-Yang)

Fix a quiver with potential (Q, W), and consider the Δ -category $\mathcal{D}(Q, W) \coloneqq \mathcal{D}^{b}(dg-Mod(\Gamma(Q, W))).$

- $\mathcal{D}(Q, W)$ is of finite type over k and CY₃.
- D(Q, W) has a canonical bounded t-structure, whose heart A(Q, W) is the category of finite-dimensional modules over the complete Jacobi algebra

$$J(\mathcal{Q}, W) \coloneqq \frac{\widehat{kQ}}{(\partial_{\alpha}W \mid \alpha \in Q_1)}.$$

Stability conditions and tilts 00000000	Quivers with potential 00000000000	Triangulated surfaces 0000000	

Mutations and tilts

We can now see how mutations of quivers with potentials correspond to tilts in $\mathcal{D}(Q, W)$.

Theorem (Keller-Yang)

Let (Q, W) be a quiver with potential and fix a vertex $i \in Q_0$. Let $(Q', W') = \mu_i(Q, W)$. There is a canonical pair of *k*-linear triangulated equivalences

 $\Phi_i^{\pm} \colon \mathcal{D}(\mathcal{Q}', W') \longrightarrow \mathcal{D}(\mathcal{Q}, W).$

Moreover, if we denote by S_i the simple object in $\mathcal{A}(Q, W)$ associated to the vertex *i*, we have

 $\Phi_i^{\pm}(\mathcal{A}(Q', W')) = \mu_i^{\pm}(\mathcal{A}(Q, W)).$

Stability conditions and tilts	Quivers with potential 00000000000	Triangulated surfaces 0000000	

Mutations and tilts

We can now see how mutations of quivers with potentials correspond to tilts in $\mathcal{D}(Q, W)$.

Theorem (Keller-Yang)

Let (Q, W) be a quiver with potential and fix a vertex $i \in Q_0$. Let $(Q', W') = \mu_i(Q, W)$. There is a canonical pair of *k*-linear triangulated equivalences

$$\Phi_i^{\pm} \colon \mathcal{D}(Q', W') \longrightarrow \mathcal{D}(Q, W).$$

Moreover, if we denote by S_i the simple object in $\mathcal{A}(Q, W)$ associated to the vertex *i*, we have

 $\Phi_i^{\pm}(\mathcal{A}(Q', W')) = \mu_i^{\pm}(\mathcal{A}(Q, W)).$

Stability conditions and tilts	Quivers with potential 00000000000	Triangulated surfaces 0000000	

Mutations and tilts

We can now see how mutations of quivers with potentials correspond to tilts in $\mathcal{D}(Q, W)$.

Theorem (Keller-Yang)

Let (Q, W) be a quiver with potential and fix a vertex $i \in Q_0$. Let $(Q', W') = \mu_i(Q, W)$. There is a canonical pair of *k*-linear triangulated equivalences

$$\Phi_i^{\pm} \colon \mathcal{D}(Q', W') \longrightarrow \mathcal{D}(Q, W).$$

Moreover, if we denote by S_i the simple object in A(Q, W) associated to the vertex *i*, we have

 $\Phi_i^{\pm}(\mathcal{A}(\mathcal{Q}', \mathcal{W}')) = \mu_i^{\pm}(\mathcal{A}(\mathcal{Q}, \mathcal{W})).$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

Distinguished component in $Stab(\mathcal{D}(Q, W))$

- There is an associated CY₃ Δ -category $\mathcal{D}(Q, W)$ of finite type
- It has a canonical finite-length heart with $\#Q_0$ simple objects, defined up to tilts at simple objects.
- The associated space of stability conditions Stab(D(Q, W)) is a complex manifold of dimension #Q₀, with a distinguished connected component Stab_J(D(Q, W)).

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

Distinguished component in $Stab(\mathcal{D}(Q, W))$

- There is an associated CY₃ Δ -category $\mathcal{D}(Q, W)$ of finite type
- It has a canonical finite-length heart with #Q₀ simple objects, defined up to tilts at simple objects.
- The associated space of stability conditions Stab(D(Q, W)) is a complex manifold of dimension #Q₀, with a distinguished connected component Stab_J(D(Q, W)).

Stability conditions and tilts 00000000	Quivers with potential	Triangulated surfaces 0000000	

Distinguished component in $Stab(\mathcal{D}(Q, W))$

- There is an associated CY₃ Δ -category $\mathcal{D}(Q, W)$ of finite type
- It has a canonical finite-length heart with #Q₀ simple objects, defined up to tilts at simple objects.
- The associated space of stability conditions Stab(D(Q, W)) is a complex manifold of dimension #Q₀, with a distinguished connected component Stab_J(D(Q, W)).

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000000	

Distinguished component in $Stab(\mathcal{D}(Q, W))$

- There is an associated CY₃ Δ -category $\mathcal{D}(Q, W)$ of finite type
- It has a canonical finite-length heart with #Q₀ simple objects, defined up to tilts at simple objects.
- The associated space of stability conditions Stab(D(Q, W)) is a complex manifold of dimension #Q₀, with a distinguished connected component Stab_J(D(Q, W)).

	Stability conditions and tilts	Quivers with potential	Triangulated surfaces ●000000	
Ideal triar	ngulations			

A marked closed surface is a pair (S, M) consisting of a compact, oriented close surface S of genus g and a finite non-empty set $M \subset S$ of marked points, also called punctures, of cardinality #M = m > 0. For the purpose of the following discussion, we suppose that if g = 0, then $m \ge 5$.

An ideal triangulation T of (S, M) is a triangulation of S, whose vertex set is precisely M. Notice that ideal triangulations have always 6g - 6 + 3m edges. It is called **non-degenerate** if every vertex has valency ≥ 3 .

To a non-degenerate triangulation T, we associate a quiver Q(T) with no loops and 2-cycles as follows.

- The vertex set is composed by midpoints of the edges of *T*.
- Arrows are obtained by inscribing a small clockwise 3-cycle inside each triangle of *T*.

	Stability conditions and tilts	Quivers with potential	Triangulated surfaces ●000000	
Ideal triar	ngulations			

A marked closed surface is a pair (S, M) consisting of a compact, oriented close surface S of genus g and a finite non-empty set $M \subset S$ of marked points, also called punctures, of cardinality #M = m > 0. For the purpose of the following discussion, we suppose that if g = 0, then $m \ge 5$.

An ideal triangulation *T* of (S, M) is a triangulation of *S*, whose vertex set is precisely *M*. Notice that ideal triangulations have always 6g - 6 + 3m edges. It is called non-degenerate if every vertex has valency ≥ 3 .

To a non-degenerate triangulation T, we associate a quiver Q(T) with no loops and 2-cycles as follows.

- The vertex set is composed by midpoints of the edges of *T*.
- Arrows are obtained by inscribing a small clockwise 3-cycle inside each triangle of *T*.

	Stability conditions and tilts	Quivers with potential	Triangulated surfaces ●000000	
Ideal triar	ngulations			

A marked closed surface is a pair (S, M) consisting of a compact, oriented close surface S of genus g and a finite non-empty set $M \subset S$ of marked points, also called punctures, of cardinality #M = m > 0. For the purpose of the following discussion, we suppose that if g = 0, then $m \ge 5$.

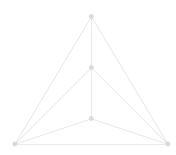
An ideal triangulation *T* of (S, M) is a triangulation of *S*, whose vertex set is precisely *M*. Notice that ideal triangulations have always 6g - 6 + 3m edges. It is called non-degenerate if every vertex has valency ≥ 3 .

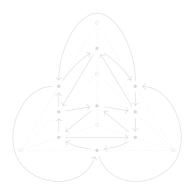
To a non-degenerate triangulation T, we associate a quiver Q(T) with no loops and 2-cycles as follows.

- The vertex set is composed by midpoints of the edges of *T*.
- Arrows are obtained by inscribing a small clockwise 3-cycle inside each triangle of *T*.

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography		
00	00000000		0●00000	O		
Example: a sphere with 5 punctures						

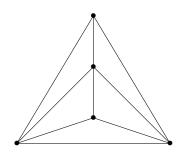
- $T \mapsto Q(T)$ defined as follows.
 - The vertex set is composed by midpoints of the edges of T.
 - Arrows are obtained by inscribing a small clockwise 3-cycle inside each triangle of *T*.

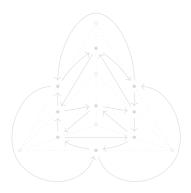




	Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0●00000			
Example: a sphere with 5 punctures						

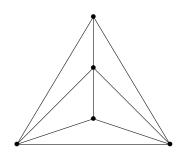
- $T \mapsto Q(T)$ defined as follows.
 - The vertex set is composed by midpoints of the edges of *T*.
 - Arrows are obtained by inscribing a small clockwise 3-cycle inside each triangle of *T*.

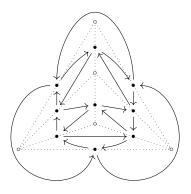




Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography		
00	00000000	0000000000	0●00000	O		
Example: a sphere with 5 punctures						

- $T \mapsto Q(T)$ defined as follows.
 - The vertex set is composed by midpoints of the edges of *T*.
 - Arrows are obtained by inscribing a small clockwise 3-cycle inside each triangle of *T*.





Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
00	00000000	0000000000	00●0000	O
The note	ntial			

- Δ) Inside each triangle Δ of *T*, a clockwise 3-cycle W_{Δ} .
- p) Around each puncture $p \in M$ of valency d, an anticlockwise d-cycle W_p .

We define the potential W(T) on Q(T) by taking the sum

$$W(T) \coloneqq \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{p \in M} W_p.$$

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
00	00000000	000000000	00●0000	O
The note	ntial			

- Δ) Inside each triangle Δ of *T*, a clockwise 3-cycle W_{Δ} .
- p) Around each puncture $p \in M$ of valency d, an anticlockwise d-cycle W_p .

We define the potential W(T) on Q(T) by taking the sum

$$W(T) \coloneqq \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{p \in M} W_p.$$

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
00	00000000	0000000000	00●0000	O
The pote	ntial			

- Δ) Inside each triangle Δ of *T*, a clockwise 3-cycle W_{Δ} .
- p) Around each puncture $p \in M$ of valency d, an anticlockwise d-cycle W_p .

We define the potential W(T) on Q(T) by taking the sum

$$W(T) \coloneqq \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{\rho \in M} W_{\rho}.$$

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
00	00000000	0000000000	00●0000	O
The note	otial			

- Δ) Inside each triangle Δ of *T*, a clockwise 3-cycle W_{Δ} .
- p) Around each puncture $p \in M$ of valency d, an anticlockwise d-cycle W_p .

We define the potential W(T) on Q(T) by taking the sum

$$W(T) \coloneqq \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{p \in M} W_p.$$

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
00	00000000	0000000000	00●0000	O
The note	otial			

- Δ) Inside each triangle Δ of *T*, a clockwise 3-cycle W_{Δ} .
- p) Around each puncture $p \in M$ of valency d, an anticlockwise d-cycle W_p .

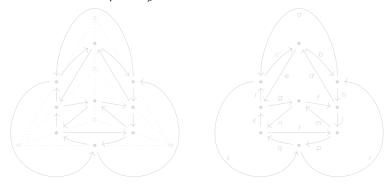
We define the potential W(T) on Q(T) by taking the sum

$$W(T) \coloneqq \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{p \in M} W_p.$$

Goal and plan 00	Stability conditions and tilts 00000000	Quivers with potential	Triangulated surfaces 0000000	Bibliography O
Example: d	a sphere with 5 p	unctures		

$$W(T) = \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{\rho \in M} W_{\rho}$$
, where:

- Δ) inside each triangle Δ of T, we have a clockwise 3-cycle W_{Δ} .
- p) around each puncture $p \in M$ of valency d, we have an anticlockwise d-cycle W_p .

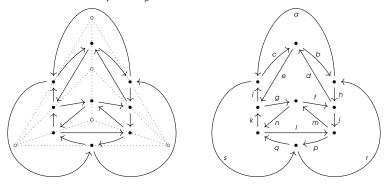


W = ars + bdh + cie + fmj + gkn + lqp- (abc + afge + lnm + hrpj + ikqs)

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography	
00	00000000	0000000000	000●000	O	
Example: a sphere with 5 punctures					

$$W(T) = \sum_{\Delta \text{ triangle of } T} W_{\Delta} - \sum_{\rho \in M} W_{\rho}$$
, where:

- Δ) inside each triangle Δ of *T*, we have a clockwise 3-cycle W_{Δ} .
- p) around each puncture $p \in M$ of valency d, we have an anticlockwise d-cycle W_p .



W = ars + bdh + cie + fmj + gkn + lqp- (abc + dfge + lnm + hrpj + ikqs)

Goal and plan	Stability conditions and tilts	Quivers with potential	Triangulated surfaces	Bibliography
00	00000000	0000000000	0000●00	O
Flips and	mutations			

We say that two non-degenerate ideal triangulations T_1 and T_2 are related by a flip, if they differ locally in a quadrilateral by a flip of the diagonal.

Lemma

If two non-degenerate ideal triangulations T_1 and T_2 are related by a flip, then the corresponding quivers with potential ($Q(T_1), W(T_1)$) and ($Q(T_2), W(T_2)$) are related by a mutation at the vertex corresponding to the flipped edge.

	Stability conditions and tilts	Quivers with potential	Triangulated surfaces 0000●00	
Flips and	mutations			

We say that two non-degenerate ideal triangulations T_1 and T_2 are related by a flip, if they differ locally in a quadrilateral by a flip of the diagonal.

Lemma

If two non-degenerate ideal triangulations T_1 and T_2 are related by a flip, then the corresponding quivers with potential ($Q(T_1), W(T_1)$) and ($Q(T_2), W(T_2)$) are related by a mutation at the vertex corresponding to the flipped edge.

We say that two non-degenerate ideal triangulations T_1 and T_2 are related by a flip, if they differ locally in a quadrilateral by a flip of the diagonal.

Lemma

If two non-degenerate ideal triangulations T_1 and T_2 are related by a flip, then the corresponding quivers with potential ($Q(T_1), W(T_1)$) and ($Q(T_2), W(T_2)$) are related by a mutation at the vertex corresponding to the flipped edge.

Stability conditions and tilts	Quivers with potential 0000000000	Triangulated surfaces 00000●0	

It is not true that all non-degenerate triangulations are related by flips through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal triangulations and quivers with potential to the larger class of triangulations containing vertices of valency ≤ 2, proving the much more difficult result that mutations flips induce mutations in this general context. His result applies to marked surface with boundary as well. Since every ideal triangulation is connected by a finite chain of flips, we find

Theorem (Labardini-Fragoso)

- There is an associated $CY_3 \Delta$ -category $\mathcal{D}(S, M)$ of finite type.
- It has a canonical finite-length heart with finite simple objects, defined up to tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 00000●0	

It is not true that all non-degenerate triangulations are related by flips through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal triangulations and quivers with potential to the larger class of triangulations containing vertices of valency ≤ 2 , proving the much more difficult result that mutations flips induce mutations in this general context. His result applies to marked surface with boundary as well.

Since every ideal triangulation is connected by a finite chain of flips, we find

Theorem (Labardini-Fragoso)

- There is an associated $CY_3 \Delta$ -category $\mathcal{D}(S, M)$ of finite type.
- It has a canonical finite-length heart with finite simple objects, defined up to tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 00000●0	

It is not true that all non-degenerate triangulations are related by flips through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal triangulations and quivers with potential to the larger class of triangulations containing vertices of valency ≤ 2 , proving the much more difficult result that mutations flips induce mutations in this general context. His result applies to marked surface with boundary as well.

Since every ideal triangulation is connected by a finite chain of flips, we find

Theorem (Labardini-Fragoso)

- There is an associated $CY_3 \Delta$ -category $\mathcal{D}(S, M)$ of finite type.
- It has a canonical finite-length heart with finite simple objects, defined up to tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 00000●0	

It is not true that all non-degenerate triangulations are related by flips through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal triangulations and quivers with potential to the larger class of triangulations containing vertices of valency ≤ 2 , proving the much more difficult result that mutations flips induce mutations in this general context. His result applies to marked surface with boundary as well.

Since every ideal triangulation is connected by a finite chain of flips, we find

Theorem (Labardini-Fragoso)

- There is an associated $CY_3 \Delta$ -category $\mathcal{D}(S, M)$ of finite type.
- It has a canonical finite-length heart with finite simple objects, defined up to tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 00000●0	

It is not true that all non-degenerate triangulations are related by flips through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal triangulations and quivers with potential to the larger class of triangulations containing vertices of valency ≤ 2 , proving the much more difficult result that mutations flips induce mutations in this general context. His result applies to marked surface with boundary as well.

Since every ideal triangulation is connected by a finite chain of flips, we find

Theorem (Labardini-Fragoso)

- There is an associated CY₃ Δ -category $\mathcal{D}(S, M)$ of finite type.
- It has a canonical finite-length heart with finite simple objects, defined up to tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 00000●0	

It is not true that all non-degenerate triangulations are related by flips through non-degenerate triangulations.

Labardini-Fragoso extended the correspondence between ideal triangulations and quivers with potential to the larger class of triangulations containing vertices of valency ≤ 2 , proving the much more difficult result that mutations flips induce mutations in this general context. His result applies to marked surface with boundary as well.

Since every ideal triangulation is connected by a finite chain of flips, we find

Theorem (Labardini-Fragoso)

- There is an associated $CY_3 \Delta$ -category $\mathcal{D}(S, M)$ of finite type.
- It has a canonical finite-length heart with finite simple objects, defined up to tilts at simple objects.

Stability conditions and tilts	Quivers with potential 000000000	Triangulated surfaces 000000●	

Distinguished component in $Stab(\mathcal{D}(S, M))$

Let (S, M) be a marked bordered surface.

- There is an associated CY₃ Δ -category $\mathcal{D}(S, M)$ of finite type
- The associated space of stability conditions $Stab(\mathcal{D}(S, M))$ is a complex manifold, with a distinguished connected component $Stab_{\Delta}(\mathcal{D}(S, M))$.

(We have to exclude from the statement some degenerate topologies)

Next talk(s)...

$$\mathsf{Stab}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, \mathcal{M})) / \mathsf{Aut}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, \mathcal{M})) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, \mathcal{M}),$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000●	

Distinguished component in $Stab(\mathcal{D}(S, M))$

Let (S, M) be a marked bordered surface.

- There is an associated CY3 Δ -category $\mathcal{D}(S, M)$ of finite type
- The associated space of stability conditions Stab(D(S, M)) is a complex manifold, with a distinguished connected component Stab_△(D(S, M)).

(We have to exclude from the statement some degenerate topologies)

Next talk(s)...

$$\mathsf{Stab}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, M)) / \mathsf{Aut}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, M)) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, M),$$

Stability conditions and tilts 00000000	Quivers with potential 000000000	Triangulated surfaces 000000●	

Distinguished component in $Stab(\mathcal{D}(S, M))$

Let (S, M) be a marked bordered surface.

- There is an associated CY₃ Δ -category $\mathcal{D}(S, M)$ of finite type
- The associated space of stability conditions Stab(D(S, M)) is a complex manifold, with a distinguished connected component Stab_△(D(S, M)).

(We have to exclude from the statement some degenerate topologies)

Next talk(s)...

$$\mathsf{Stab}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, \mathcal{M})) / \mathsf{Aut}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, \mathcal{M})) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, \mathcal{M}),$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000●	

Distinguished component in $Stab(\mathcal{D}(\mathcal{S}, M))$

Let (S, M) be a marked bordered surface.

- There is an associated CY₃ Δ -category $\mathcal{D}(S, M)$ of finite type
- The associated space of stability conditions Stab(D(S, M)) is a complex manifold, with a distinguished connected component Stab_△(D(S, M)).

(We have to exclude from the statement some degenerate topologies)

Next talk(s)...

$$\mathsf{Stab}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, M)) / \mathsf{Aut}_{\bigtriangleup}(\mathcal{D}(\mathcal{S}, M)) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S}, M),$$

Stability conditions and tilts	Quivers with potential	Triangulated surfaces 000000●	

Distinguished component in $Stab(\mathcal{D}(S, M))$

Let (S, M) be a marked bordered surface.

- There is an associated CY₃ Δ -category $\mathcal{D}(S, M)$ of finite type
- The associated space of stability conditions $\operatorname{Stab}(\mathcal{D}(S, M))$ is a complex manifold, with a distinguished connected component $\operatorname{Stab}_{\Delta}(\mathcal{D}(S, M))$.

(We have to exclude from the statement some degenerate topologies)

Next talk(s)...

$$\mathsf{Stab}_{\bigtriangleup}(\mathcal{D}(\mathcal{S},\mathcal{M})) / \mathsf{Aut}_{\bigtriangleup}(\mathcal{D}(\mathcal{S},\mathcal{M})) \cong \mathsf{Quad}_{\heartsuit}(\mathcal{S},\mathcal{M}),$$

Stability conditions and tilts 00000000	Quivers with potential 000000000	Triangulated surfaces	Bibliography •

Thank you!

- 1. T. Bridgeland. "Stability conditions on triangulated categories". *Ann. Math.* (2007), pp. 317–345.
- 2. T. Bridgeland and I. Smith. "Quadratic differentials as stability conditions". *Publ. Math. IHÉS* 121.1 (2015), pp. 155–278.
- 3. H. Derksen, J. Weyman, and A. Zelevinsky. "Quivers with potentials and their representations I: Mutations". *Sel. Math. New Ser.* 14.1 (2008), pp. 59–119.
- 4. B. Keller and D. Yang. "Derived equivalences from mutations of quivers with potential". *Adv. Math.* 226.3 (2011), pp. 2118–2168.
- 5. D. Labardini-Fragoso. "Quivers with potentials associated to triangulated surfaces". *Proc. London Math. Soc.* 98.3 (2009), pp. 797–839.
- D. Labardini-Fragoso. "Quivers with potentials associated to triangulated surfaces, part IV: Removing boundary assumptions". Sel. Math. New Ser. 22.1 (2016), pp. 145–189.