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Motivation: normal bundle for singular subvarieties

Smooth case: Singular case:

NORMAL BUNDLE ; NORMAL CONE

In other words, in the singular setting cones are the right substitute of vector
bundles.
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Cones: definition

All schemes are of finite type over a field k .

Definition

Let S• = S0 ⊕ S1 ⊕ · · · be a sheaf of graded OX -algebras on a scheme X , such
that
• the canonical map OX → S0 is an iso,
• S• is locally generated as an OX -algebra by S1.

Define the cone
C := Spec(S•), π : C→ X ,

and the projective cone

P(C) := Proj(S•), p : P(C)→ X .

It comes with a canonical line bundle O(1). The morphism p is proper.
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Vector bundles are cones

Lemma

Consider a rank r vector bundle E → X . Denote by E the sheaf of sections. Then

E = Spec(Sym• E∨).

In other words, the total space E is the cone associated to the sheaf Sym• E∨ of
graded OX -algebras.

Idea of the proof. Consider an affine subset U = Spec(A) ⊂ X such that
E∨(U) = (OX (U)⊕r)∨ = Hom(A⊕r ,A). Then

Sym• E∨(U) = A[x1, . . . , xr ] =⇒ Spec
(
Sym• E∨(U)

)
= Ar × U.
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Normal cones

Let X ↪→ Y be a closed imbedding (i.e. is isomorphic to a closed subscheme)
and I the ideal sheaf of X in Y .

Definition

The normal cone of X in Y is the cone defined by the graded sheaf of
OX -algebra

⊕
n>0 I

n/In+1:

CX Y := Spec
(⊕

n>0
In/In+1

)
, π : CX Y → X .

If X ↪→ Y is regular, then I/I2 is locally free and the natural map
Sym•(I/I2)→

⊕
n>0 I

n/In+1 is an isomorphism. In particular,

CX Y = Spec
(
Sym•(I/I2)

)
is the normal bundle, also denote by NX Y .
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Blow-ups

Let X ↪→ Y be a closed imbedding and I the ideal sheaf of X in Y .

Definition

The blow-up of Y along X is the projective cone defined by the graded sheaf of
OY -algebra

⊕
n>0 I

n:

BlX Y := Proj
(⊕

n>0
In
)
, p : BlX Y → Y .

The canonical line bundle O(1) on BlX Y is the ideal sheaf of E := p−1(X), which
is therefore a Cartier divisor of BlX Y called the exceptional divisor.

By construction, the exceptional divisor is the projective cone of
(
⊕

n In)⊗OY
OX =

⊕
n In/In+1. Thus,

E = P(CX Y).
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A schematic picture of a blow-up

E = P(CX Y) BlX Y

X Y

p

Proposition

If X is nowhere dense in Y , then p : BlX Y → Y is birational. More precisely, p is an
iso between BlX Y − E and Y − X .
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Applications of blow-ups

Slogan

Blow-up is the “most economic way” to turn a subscheme into a Cartier divisor.

Blow-ups are fundamental constructions in algebraic geometry, with essential
applications in:

• birational geometry : every birational morphism between projective
varieties is a blow-up,

• Hironaka’s resolution of singularities: resolutions are constructed by
repeated blow-ups,

• stability conditions and geometric PDEs.
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Segre class for vector bundles

Recall from Campbell’s talk. Consider p : P(E)→ X the projective bundle
associated to a rank (e + 1) vector bundle E. Its Segre classes is the operation

si(E)∩ : Ak X → Ak−iX ,

defined by
si(E)∩α := p∗

(
c1(O(1))e+i ∩ p∗α

)
.

Question

Can we generalise it to cones?

Problem

For a general cone C, p : P(C)→ X is not necessarily flat, so we cannot
bull-back classes to P(C). However, there is a canonical class on P(C), that is
the fundamental class.

Naı̈ve definition:

s(C)“=”p∗
(∑

i>0
c1(O(1))i ∩ [P(C)]

)
∈ A•X .
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Segre class for cones

Let C = Spec(S•) be a cone over X , and define its projective completion to be

P(C ⊕ 1) := Proj(S•[z]), Sk [z] := Sk ⊕ Sk−1z ⊕ · · · ⊕ S0zk ,

together with the proper morphism q : P(C ⊕ 1)→ X . Note that
P(C ⊕ 1) = C ∪ P(C), with P(C) called the hyperplane at infinity.

Definition

Define the Segre class s(C) ∈ A•X of a cone C as

s(C) := q∗
(∑

i>0
c1(O(1))i ∩ [P(C ⊕ 1)]

)
.

Why adding the trivial factor 1 is the right thing to do?

If S• = OX is trivial, then P(C) is empty while P(C ⊕ 1) is not; we get different
answers. With definition, we get s(C ⊕ 1) = s(C).
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Properties of the Segre class

Proposition

1 If E → X is a vector bundle,

s(E) = c(E)−1 ∩ [X ].

2 Let C1, . . . ,Cr be the irreducible components of C, mi the geometric
multiplicity of Ci in C. Then

s(C) =

r∑
i=1

mi s(Ci).

In other words, the definition agree with the previous one on vector bundles,
and respects irreducible components of cones.
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Properties of the Segre class

Recall

VBs: c(E)−1 ∩ [X ] = p∗

(∑
i>0

c1(O(1))i ∩ p∗[X ]

)

Cones: s(C) = q∗

(∑
i>0

c1(O(1))i ∩ [P(C ⊕ 1)]
)

Sketch of the proof.

1 Notice that [P(E ⊕ 1)] = q∗[X ], so that

s(E) = c(E ⊕ 1)−1 ∩ [X ].

By Whitney formula, c(E ⊕ 1) = c(E).

2 It can be shown that each Ci (which is a cone) is an open dense in
P(Ci ⊕ 1). Thus,

[P(C ⊕ 1)] =
r∑

i=1

mi [P(Ci ⊕ 1)]

and the assertion follows.
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Segre class of subschemes

Consider X ↪→ Y a closed immersion, CX Y → X its normal cone:

CX Y = Spec

(⊕
n>0

In/In+1
)
.

Define the Segre class of X in Y as

s(X ,Y) := s(CX Y) ∈ A•X .

We have that for X regularly imbedded, s(X ,Y) = c(NX Y)−1 ∩ [X ].
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Properties of the Segre class of subschemes

Theorem

Let f : Y ′→ Y be a morphism of pure-dimensional schemes, X ⊂ Y a closed
subscheme, X ′ := f−1(X) the inverse image scheme, g : X ′→ X the induced
morphism.

1 If f is proper, Y irreducible, and f maps each irreducible component of Y ′

onto Y , then
g∗s(X ′,Y ′) = deg(Y ′/Y) s(X ,Y).

2 If g is flat,
g∗s(X ,Y) = s(X ′,Y ′).

Corollary

When f is birational, i.e. deg(Y ′/Y) = 1, we obtain birational invariance of Segre
classes.

Moreover, if both X and X ′ are regular, we obtain birational invariance of Chern
classes of normal bundles.
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Proof of (1)

Assume f proper, Y and Y ′ irreducible (s(−) and deg(−) behaves well with
respect to irreducible components). Set d := deg(Y ′/Y).

E ′ := P(CX ′Y ′ ⊕ 1) M ′ := BlX ′×0(Y ′ ×A1)

X ′ Y ′

E := P(CX Y ⊕ 1) M := BlX×0(Y ×A1)

X Y

G
F

q ′

g

q f

We have G∗OE(1) = OE ′(1) and

f∗[Y ′] = d [Y ]
(†)
==⇒ F∗[M ′] = d [M]

(‡)
==⇒ G∗[E ′] = d [E]

(†) LHS is computed on open dense, so ×A1 and blow-up does not change it,

(‡) proper push-forward commutes with intersecting with a Cartier divisor.



Cones Segre class Deformation to the normal cone Bibliography

Proof of (1)

If f is proper,

E ′ = P(CX ′Y ′ ⊕ 1) X ′

E = P(CX Y ⊕ 1) X

G

q ′

g

q

;

G∗OE(1) = OE ′(1)

G∗[E ′] = d [E]

 (])

Thus, we find

g∗s(X ′,Y ′) = g∗q ′∗
(∑

i
c1(OE ′(1))i ∩ [E ′]

)
defn of s(X ′,Y ′)

= q∗G∗
(∑

i
c1(OE ′(1))i ∩ [E ′]

)
g∗q ′∗ = q∗G∗

= q∗
(∑

i
c1(OE(1))i ∩ d [E]

)
proj formula + (])

= d s(X ,Y) defn of s(X ,Y).
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Proof of (2)

If g is flat,

E ′ = P(CX ′Y ′ ⊕ 1) X ′

E = P(CX Y ⊕ 1) X

G

q ′

g

q

;

G∗OE(1) = OE ′(1)

G∗[E] = [E ′]

 ([)

Thus, we find

g∗s(X ,Y) = g∗q∗
(∑

i
c1(OE(1))i ∩ [E]

)
defn of s(X ,Y)

= q ′∗G
∗
(∑

i
c1(OE(1))i ∩ [E]

)
g∗q∗ = q ′∗G

∗

= q ′∗
(∑

i
c1(OE ′(1))i ∩ [E ′]

)
flat-bullback formula + ([)

= s(X ′,Y ′) defn of s(X ′,Y ′).
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Applications

• Let X be a scheme which can be imbedded as a closed subscheme of a
non-singular variety Y . Then the class

c(X) := c(TY |X )∩ s(X ,Y) ∈ A•X

does not depend on the choice of imbedding. It is called the canonical
class of X .

• For an irreducible subvariety X of a variety Y , the coefficient eX Y of [X ] in
the class s(X ,Y) is called the multiplicity of Y along X .

• Geometry of linear systems: if a subscheme is the base locus of a linear
system, its Segre class is related to important invariants of the system.

See Fulton for further readings.
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Deformation of closed subschemes

Let X ↪→ Y be a closed subscheme, with normal cone C := CX Y .

Theorem

There exists a deformation scheme M = MX Y
together with a closed imbedding X × P1 ↪→ M
and a morphism ρ : M → P1 s.t. the diagram
commutes and

X × P1 M

P1

pr ρ

• ρ is flat,
• over t ∈ P1 − {∞}, the fiber is Mt := ρ

−1(t) = Y and the imbedding is the
given one X ↪→ Y ,
• over t =∞, we have M∞ := ρ−1(∞) is the sum of two effective Cartier

divisors in M:
M∞ = P(C ⊕ 1) + BlX Y

and the imbedding X = X × {∞} ↪→ M∞ is the imbedding of X in C as the
zero section, followed by the imbedding of C in P(C ⊕ 1),
• the two components of M∞ intersect at P(C).
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Deformation of closed subschemes

X × P1 M

P1

pr ρ
;

{
Xt := pr−1(t) = X × {t}
Mt := ρ−1(t)

At t ∈ P1 − {∞}:[
Xt ↪→ Mt

]
=
[
X ↪→ Y

]

•
X0 = Xt1

= Xt2

P(C)

M0

Mt1

Mt2

At t =∞:[
X∞ ↪→ M∞] = [

X ↪→ P(C ⊕ 1) + BlX Y
]

•

•
P(C)

C

BlX Y

X∞
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The construction

M := BlX∞(Y × P1)

• Flat morphism ρ: it is the composition of flat morphisms

M = BlX∞(Y × P1)
p−→ Y × P1 pr−→ P1.

• Closed imbedding X × P1 ↪→ M. From the sequence of closed imbeddings

X = X∞ ↪→ X × P1 ↪→ Y × P1,

it follows that BlX∞(X × P1) ↪→ BlX∞(Y × P1). Since X∞ ↪→ X × P1 is a Cartier
divisor, BlX∞(X × P1) is identified with X × P1. Thus,

X × P1 ↪→ BlX∞(Y × P1) = M

• Since M
p−→ Y ×P1 is an iso away from Y × {∞}, we find that for t ∈ P1 − {∞}[

Xt ↪→ Mt
]
=
[
X ↪→ M

]
.

• For t =∞, see Fulton.
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Specialisation to the normal cone

Let X ↪→ Y be a closed imbedding, with normal cone C := CX Y .

Definition

Define the homomorphisms σ : Zk Y → Zk C by

σ[V ] := [CX∩V V ]

and extended linearly.

Proposition

If α ∼ 0, then σ(α) ∼ 0. Hence, we define the specialisation homomorphism

σ : Ak Y → Ak C.
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Specialisation to the normal cone

Proposition

If α ∼ 0, then σ(α) ∼ 0.

Sketch of the proof. Let M◦ = M◦X Y be the complement of BlX Y inside
MX Y = BlX×{∞}Y × P1.

i : C ↪→ M◦

j : Y ×A1 ↪→ M

Y ×A1 = M◦ − C

=⇒
Ak+1C Ak+1M◦ Ak+1Y×A1 0

Ak C Ak Y

i∗ j∗

i∗

σ̃

pr∗

• exact sequence from (see Reinier’s talk)

• i∗ is the Gysin map for divisors, and i∗ i∗(α) = c1(O(C))∩α (see Nitin’s talk)

• Fact: c1(O(C)) is trivial, so i∗ i∗ = 0

Thus, we have a well-defined map σ̃ : Ak Y → Ak C. We have to show that it
takes [V ] to [CX∩V V ].



Cones Segre class Deformation to the normal cone Bibliography

Specialisation to the normal cone

Ak+1C Ak+1M◦ Ak+1Y×A1 0

Ak C Ak Y

i∗ j∗

i∗

σ̃

pr∗

By definition, pr∗[V ] = [pr−1(V)] = [V ×A1].

Fact 1: M◦X∩V V is a closed subvariety of M◦ = M◦X Y which restricts to V ×A1.

Thus, we have
σ̃[V ] = i∗[M◦X∩V V ].

Fact 2: The Cartier divisor C = M◦ ∩M∞ intersects M◦X∩V V in CX∩V V .

Thus by definition of i∗,
i∗[M◦X∩V V ] = [CX∩V V ].
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Application: Gysin homomorphism

Let i : X ↪→ Y be a regular closed imbedding of codimension d, with normal
bundle N = NX Y .

Definition

Define the Gysin homomorphism

i∗ : Ak Y → Ak−dX

by composing the specialisation homomorphism σ : Ak Y → Ak N with the Gysin
homomorphism for bundles s∗N : Ak N→ Ak−dX (see Campbell’s talk).

Next time: intersection product!
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Thank you!
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