Cones, Segre classes, and deformation to the normal cone

Alessandro Giacchetto

November 9, 2020

Cones

Deformation to the normal cone 0000000

Plan of the talk

2 Segre class

3 Deformation to the normal cone

Bibliography

Cones •000000 Segre class 0000000000 Deformation to the normal cone 0000000 Bibliography

Motivation: normal bundle for singular subvarieties

In other words, in the singular setting cones are the right substitute of vector bundles.

Cones: definition

All schemes are of finite type over a field k.

Definition

Let $S^{\bullet} = S^{0} \oplus S^{1} \oplus \cdots$ be a sheaf of graded \mathcal{O}_{X} -algebras on a scheme X, such that

- the canonical map $\mathfrak{O}_X \to S^0$ is an iso,
- S^{\bullet} is locally generated as an \mathcal{O}_X -algebra by S^1 .

Define the cone

$$C \coloneqq \underline{\mathsf{Spec}}(S^{\bullet}), \qquad \pi \colon C \to X,$$

and the projective cone

$$\mathbb{P}(C) := \operatorname{Proj}(S^{\bullet}), \qquad p \colon \mathbb{P}(C) \to X.$$

It comes with a canonical line bundle O(1). The morphism p is proper.

Vector bundles are cones

Lemma

Consider a rank r vector bundle $E \rightarrow X$. Denote by \mathcal{E} the sheaf of sections. Then

$$E = \operatorname{Spec}(\operatorname{Sym}^{\bullet} \mathcal{E}^{\vee}).$$

In other words, the total space *E* is the cone associated to the sheaf Sym[•] \mathcal{E}^{\vee} of graded \mathcal{O}_X -algebras.

Idea of the proof. Consider an affine subset $U = \text{Spec}(A) \subset X$ such that $\mathcal{E}^{\vee}(U) = (\mathcal{O}_X(U)^{\oplus r})^{\vee} = \text{Hom}(A^{\oplus r}, A)$. Then

$$\operatorname{Sym}^{\bullet} \mathcal{E}^{\vee}(U) = A[x_1, \dots, x_r] \quad \Longrightarrow \quad \operatorname{Spec}(\operatorname{Sym}^{\bullet} \mathcal{E}^{\vee}(U)) = \mathbb{A}^r \times U.$$

Cones 000000	Segre class 000000000	
Normal cones		

Let $X \hookrightarrow Y$ be a closed imbedding (*i.e.* is isomorphic to a closed subscheme) and \mathcal{I} the ideal sheaf of X in Y.

Definition

The normal cone of X in Y is the cone defined by the graded sheaf of \mathcal{O}_X -algebra $\bigoplus_{n\geq 0} \mathcal{I}^n/\mathcal{I}^{n+1}$:

$$C_X Y := \underline{\operatorname{Spec}} \left(\bigoplus_{n \ge 0} \mathfrak{I}^n / \mathfrak{I}^{n+1} \right), \qquad \pi \colon C_X Y \to X.$$

If $X \hookrightarrow Y$ is regular, then $\mathcal{I}/\mathcal{I}^2$ is locally free and the natural map $Sym^{\bullet}(\mathcal{I}/\mathcal{I}^2) \to \bigoplus_{n \ge 0} \mathcal{I}^n/\mathcal{I}^{n+1}$ is an isomorphism. In particular,

$$C_X Y = \underline{\operatorname{Spec}}(\operatorname{Sym}^{\bullet}(\mathfrak{I}/\mathfrak{I}^2))$$

is the normal bundle, also denote by $N_X Y$.

Cones 0000000	Segre class 000000000	

Blow-ups

Let $X \hookrightarrow Y$ be a closed imbedding and \mathcal{I} the ideal sheaf of X in Y.

Definition

The blow-up of Y along X is the projective cone defined by the graded sheaf of \mathcal{O}_{Y} -algebra $\bigoplus_{n \ge 0} \mathcal{I}^{n}$:

$$Bl_XY := \underline{\operatorname{Proj}} \left(\bigoplus_{n \ge 0} \mathfrak{I}^n \right), \qquad p \colon Bl_XY \to Y.$$

The canonical line bundle O(1) on $Bl_X Y$ is the ideal sheaf of $E := p^{-1}(X)$, which is therefore a Cartier divisor of $Bl_X Y$ called the exceptional divisor.

By construction, the exceptional divisor is the projective cone of $(\bigoplus_n \mathcal{I}^n) \otimes_{\mathcal{O}_Y} \mathcal{O}_X = \bigoplus_n \mathcal{I}^n / \mathcal{I}^{n+1}$. Thus,

 $E = \mathbb{P}(C_X Y).$

Cones 0000000 Segre class 0000000000 Deformation to the normal cone 0000000 Bibliography

A schematic picture of a blow-up

Proposition

If X is nowhere dense in Y, then $p: Bl_X Y \to Y$ is birational. More precisely, p is an iso between $Bl_X Y - E$ and Y - X.

Applications of blow-ups

Slogan

Blow-up is the "most economic way" to turn a subscheme into a Cartier divisor.

Blow-ups are fundamental constructions in algebraic geometry, with essential applications in:

- *birational geometry*: every birational morphism between projective varieties is a blow-up,
- Hironaka's *resolution of singularities*: resolutions are constructed by repeated blow-ups,
- stability conditions and geometric PDEs.

Cones 0000000 Segre class •000000000 Deformation to the normal cone 0000000 Bibliography O

Segre class for vector bundles

Recall from Campbell's talk. Consider $p: \mathbb{P}(E) \to X$ the projective bundle associated to a rank (e + 1) vector bundle *E*. Its Segre classes is the operation

$$s_i(E) \cap : A_k X \to A_{k-i} X,$$

defined by

$$s_i(E) \cap \alpha \coloneqq p_*(c_1(\mathcal{O}(1))^{e+i} \cap p^*\alpha).$$

Question

Can we generalise it to cones?

Problem

For a general cone $C, p: \mathbb{P}(C) \to X$ is not necessarily flat, so we cannot bull-back classes to $\mathbb{P}(C)$. However, there is a canonical class on $\mathbb{P}(C)$, that is the fundamental class.

Naïve definition:

$$s(C) = p_*\left(\sum_{i \ge 0} c_1(\mathfrak{O}(1))^i \cap [\mathbb{P}(C)]\right) \in A_{\bullet}X.$$

Let $C = \text{Spec}(S^{\bullet})$ be a cone over X, and define its projective completion to be

 $\mathbb{P}(C \oplus \mathbf{1}) := \operatorname{Proj}(S^{\bullet}[z]), \qquad S^{k}[z] := S^{k} \oplus S^{k-1}z \oplus \cdots \oplus S^{0}z^{k},$

together with the proper morphism $q: \mathbb{P}(C \oplus 1) \to X$. Note that $\mathbb{P}(C \oplus 1) = C \cup \mathbb{P}(C)$, with $\mathbb{P}(C)$ called the hyperplane at infinity.

Definition

Define the Segre class $s(C) \in A_{\bullet}X$ of a cone C as

$$s(C) \coloneqq q_* \Big(\sum_{i \ge 0} c_1(\mathfrak{O}(1))^i \cap [\mathbb{P}(C \oplus \mathbf{1})] \Big).$$

Why adding the trivial factor 1 is the right thing to do?

If $S^{\bullet} = \mathcal{O}_X$ is trivial, then $\mathbb{P}(C)$ is empty while $\mathbb{P}(C \oplus 1)$ is not; we get different answers. With definition, we get $s(C \oplus 1) = s(C)$.

Deformation to the normal cone 0000000

Properties of the Segre class

Proposition

• If $E \to X$ is a vector bundle,

$$s(E) = c(E)^{-1} \cap [X].$$

Let C₁,..., C_r be the irreducible components of C, m_i the geometric multiplicity of C_i in C. Then

$$s(C) = \sum_{i=1}^r m_i s(C_i).$$

In other words, the definition agree with the previous one on vector bundles, and respects irreducible components of cones.

Deformation to the normal cone 0000000 Bibliography

Properties of the Segre class

Recall
VBs:
$$c(E)^{-1} \cap [X] = p_*\left(\sum_{i \ge 0} c_1(\mathcal{O}(1))^i \cap p^*[X]\right)$$

Cones: $s(C) = q_*\left(\sum_{i \ge 0} c_1(\mathcal{O}(1))^i \cap [\mathbb{P}(C \oplus 1)]\right)$

Sketch of the proof.

• Notice that $[P(E \oplus 1)] = q^*[X]$, so that

$$s(E) = c(E \oplus \mathbf{1})^{-1} \cap [X].$$

By Whitney formula, $c(E \oplus 1) = c(E)$.

2 It can be shown that each C_i (which is a cone) is an open dense in $\mathbb{P}(C_i \oplus 1)$. Thus,

$$[\mathbb{P}(C \oplus \mathbf{1})] = \sum_{i=1}^{r} m_i [\mathbb{P}(C_i \oplus \mathbf{1})]$$

and the assertion follows.

	000000000			
Cones	Segre class	Deformation to the normal cone	Bibliography	

Segre class of subschemes

Consider $X \hookrightarrow Y$ a closed immersion, $C_X Y \to X$ its normal cone:

$$C_X Y = \underline{\operatorname{Spec}} \left(\bigoplus_{n \ge 0} \mathfrak{I}^n / \mathfrak{I}^{n+1} \right).$$

Define the Segre class of X in Y as

$$s(X, Y) := s(C_X Y) \in A_{\bullet} X.$$

We have that for X regularly imbedded, $s(X, Y) = c(N_X Y)^{-1} \cap [X]$.

Properties of the Segre class of subschemes

Theorem

Let $f: Y' \to Y$ be a morphism of pure-dimensional schemes, $X \subset Y$ a closed subscheme, $X' := f^{-1}(X)$ the inverse image scheme, $g: X' \to X$ the induced morphism.

If f is proper, Y irreducible, and f maps each irreducible component of Y' onto Y, then

$$g_*s(X',Y') = \deg(Y'/Y)s(X,Y).$$

2 If g is flat,

$$g^*s(X,Y) = s(X',Y').$$

Corollary

When f is birational, *i.e.* deg(Y'/Y) = 1, we obtain birational invariance of Segre classes.

Moreover, if both X and X' are regular, we obtain birational invariance of Chern classes of normal bundles.

Assume f proper, Y and Y' irreducible $(s(-) \text{ and } \deg(-)$ behaves well with respect to irreducible components). Set $d := \deg(Y'/Y)$.

We have $G^* \mathcal{O}_E(1) = \mathcal{O}_{E'}(1)$ and

$$f_*[Y'] = d[Y] \xrightarrow{(\dagger)} F_*[M'] = d[M] \xrightarrow{(\ddagger)} G_*[E'] = d[E]$$

(†) LHS is computed on open dense, so $\times \mathbb{A}^1$ and blow-up does not change it,

(‡) proper push-forward commutes with intersecting with a Cartier divisor.

Proof of (1)

If f is proper,

Thus, we find

$$\begin{split} g_*s(X',Y') &= g_*q_*'\Big(\sum_i c_1(\mathfrak{O}_{E'}(1))^i \cap [E']\Big) & \text{defn of } s(X',Y') \\ &= q_*G_*\Big(\sum_i c_1(\mathfrak{O}_{E'}(1))^i \cap [E']\Big) & g_*q_*' = q_*G_* \\ &= q_*\Big(\sum_i c_1(\mathfrak{O}_E(1))^i \cap d[E]\Big) & \text{proj formula } + (\sharp) \\ &= d\,s(X,Y) & \text{defn of } s(X,Y). \end{split}$$

If g is flat,

$$\begin{array}{ccc} E' = \mathbb{P}(C_{X'}Y' \oplus \mathbf{1}) & \xrightarrow{q'} X' & G^* \mathfrak{O}_E(1) = \mathfrak{O}_{E'}(1) \\ g \downarrow & \downarrow g & \rightsquigarrow \\ E = \mathbb{P}(C_XY \oplus \mathbf{1}) & \xrightarrow{q} X & G^*[E] = [E'] \end{array} \right\}$$
(b)

Thus, we find

$$g^*s(X,Y) = g^*q_*\left(\sum_i c_1(\mathfrak{O}_E(1))^i \cap [E]\right) \quad \text{defm}$$
$$= q'_*G^*\left(\sum_i c_1(\mathfrak{O}_E(1))^i \cap [E]\right) \quad g^*q_*$$
$$= q'_*\left(\sum_i c_1(\mathfrak{O}_{E'}(1))^i \cap [E']\right) \quad \text{flat-k}$$
$$= s(X',Y') \quad \text{defm}$$

defn of s(X, Y)

 $g^*q_* = q'_*G^*$

flat-bullback formula + (\flat) defn of s(X', Y').

• Let X be a scheme which can be imbedded as a closed subscheme of a non-singular variety Y. Then the class

$$c(X) \coloneqq c(T_Y|_X) \cap s(X,Y) \in A_{\bullet}X$$

does not depend on the choice of imbedding. It is called the canonical class of X.

- For an irreducible subvariety X of a variety Y, the coefficient $e_X Y$ of [X] in the class s(X, Y) is called the multiplicity of Y along X.
- Geometry of linear systems: if a subscheme is the base locus of a linear system, its Segre class is related to important invariants of the system.

See Fulton for further readings.

Deformation to the normal cone ••••••• Bibliography

Deformation of closed subschemes

Let $X \hookrightarrow Y$ be a closed subscheme, with normal cone $C \coloneqq C_X Y$.

Theorem

There exists a deformation scheme $M = M_X Y$ together with a closed imbedding $X \times \mathbb{P}^1 \hookrightarrow M$ and a morphism $\rho: M \to \mathbb{P}^1$ s.t. the diagram commutes and

- ρ is flat,
- over $t \in \mathbb{P}^1 \{\infty\}$, the fiber is $M_t := \rho^{-1}(t) = Y$ and the imbedding is the given one $X \hookrightarrow Y$,
- over t = ∞, we have M_∞ := ρ⁻¹(∞) is the sum of two effective Cartier divisors in M:

$$M_{\infty} = \mathbb{P}(C \oplus \mathbf{1}) + BI_X Y$$

and the imbedding $X = X \times \{\infty\} \hookrightarrow M_{\infty}$ is the imbedding of X in C as the zero section, followed by the imbedding of C in $\mathbb{P}(C \oplus 1)$,

• the two components of M_{∞} intersect at $\mathbb{P}(C)$.

Cones	Segre class	Deformation to the normal cone	
0000000	000000000	000000	

Deformation of closed subschemes

At
$$t \in \mathbb{P}^1 - \{\infty\}$$
:
 $[X_t \hookrightarrow M_t] = [X \hookrightarrow Y]$
 $X_\infty \hookrightarrow M_\infty] = [X \hookrightarrow \mathbb{P}(C \oplus 1) + Bl_X Y]$

Cones 0000000	Segre class 000000000	Deformation to the normal cone 00●0000		
The construction				

$$M := Bl_{X_{\infty}}(Y \times \mathbb{P}^1)$$

• Flat morphism ρ : it is the composition of flat morphisms

$$M = Bl_{X_{\infty}}(Y \times \mathbb{P}^1) \xrightarrow{\rho} Y \times \mathbb{P}^1 \xrightarrow{\text{pr}} \mathbb{P}^1.$$

• Closed imbedding $X \times \mathbb{P}^1 \hookrightarrow M$. From the sequence of closed imbeddings

$$X = X_{\infty} \hookrightarrow X \times \mathbb{P}^1 \hookrightarrow Y \times \mathbb{P}^1$$
,

it follows that $B_{I_{\infty}}(X \times \mathbb{P}^1) \hookrightarrow B_{I_{\infty}}(Y \times \mathbb{P}^1)$. Since $X_{\infty} \hookrightarrow X \times \mathbb{P}^1$ is a Cartier divisor, $B_{I_{\infty}}(X \times \mathbb{P}^1)$ is identified with $X \times \mathbb{P}^1$. Thus,

$$X \times \mathbb{P}^1 \hookrightarrow Bl_{X_{\infty}}(Y \times \mathbb{P}^1) = M$$

• Since $M \xrightarrow{p} Y \times \mathbb{P}^1$ is an iso away from $Y \times \{\infty\}$, we find that for $t \in \mathbb{P}^1 - \{\infty\}$

$$[X_t \hookrightarrow M_t] = [X \hookrightarrow M].$$

• For $t = \infty$, see Fulton.

Deformation to the normal cone 0000000

Specialisation to the normal cone

Let $X \hookrightarrow Y$ be a closed imbedding, with normal cone $C \coloneqq C_X Y$.

Definition

Define the homomorphisms $\sigma: Z_k Y \to Z_k C$ by

 $\sigma[V] := [C_{X \cap V}V]$

and extended linearly.

Proposition

If $\alpha \sim 0$, then $\sigma(\alpha) \sim 0$. Hence, we define the specialisation homomorphism

$$\sigma\colon A_kY\to A_kC.$$

Deformation to the normal cone 0000000

Specialisation to the normal cone

Proposition

If $\alpha \sim 0$, then $\sigma(\alpha) \sim 0$.

Sketch of the proof. Let $M^{\circ} = M_{\chi}^{\circ}Y$ be the complement of $Bl_{\chi}Y$ inside $M_{\chi}Y = Bl_{\chi \times \{\infty\}}Y \times \mathbb{P}^{1}$.

- $\begin{array}{cccc} i: C \hookrightarrow M^{\circ} & & & & & \\ j: Y \times \mathbb{A}^{1} \hookrightarrow M & \implies & & \\ Y \times \mathbb{A}^{1} = M^{\circ} C & & & & & \\ \end{array} \xrightarrow{k+1} C \xrightarrow{i_{*}} A_{k+1} M^{\circ} \xrightarrow{j^{*}} A_{k+1} Y \times \mathbb{A}^{1} \longrightarrow 0 \\ & & & i^{*} \downarrow & \uparrow^{\mathsf{pr}^{*}} \\ & & & & & \\ A_{k}C \longleftarrow A_{k}Y \end{array}$
- exact sequence from (see Reinier's talk)
- i^* is the Gysin map for divisors, and $i^*i_*(\alpha) = c_1(\mathcal{O}(C)) \cap \alpha$ (see Nitin's talk)
- Fact: $c_1(O(C))$ is trivial, so $i^*i_* = 0$

Thus, we have a well-defined map $\tilde{\sigma}: A_k Y \to A_k C$. We have to show that it takes [V] to $[C_{X \cap V}V]$.

Segre class		Bibliography
	0000000	

Specialisation to the normal cone

By definition, $\operatorname{pr}^*[V] = [\operatorname{pr}^{-1}(V)] = [V \times \mathbb{A}^1].$

Fact 1: $M^{\circ}_{X\cap V}V$ is a closed subvariety of $M^{\circ} = M^{\circ}_X Y$ which restricts to $V \times \mathbb{A}^1$. Thus, we have

$$\tilde{\sigma}[V] = i^* [M^{\circ}_{X \cap V} V].$$

Fact 2: The Cartier divisor $C = M^{\circ} \cap M_{\infty}$ intersects $M^{\circ}_{X \cap V} V$ in $C_{X \cap V} V$.

Thus by definition of *i**,

$$i^*[M^\circ_{X\cap V}V] = [C_{X\cap V}V].$$

Application: Gysin homomorphism

Let $i: X \hookrightarrow Y$ be a regular closed imbedding of codimension d, with normal bundle $N = N_X Y$.

Definition

Define the Gysin homomorphism

$$i^*: A_k Y \to A_{k-d} X$$

by composing the specialisation homomorphism $\sigma: A_k Y \to A_k N$ with the Gysin homomorphism for bundles $s_N^*: A_k N \to A_{k-d} X$ (see Campbell's talk).

Next time: intersection product!

Thank you!

- W. Fulton. Intersection theory. A Series of Modern Surveys in Mathematics, Vol. 2, Springer-Verlag (1998)
- L. Battistella, F. Carocci, and C. Manolache. Virtual classes for the working mathematician. SIGMA 16 (2020): 026
- R. Vakil. Topics in algebraic geometry: Introduction to intersection theory in algebraic geometry. (2004): https://math.stanford.edu/~vakil/245/