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Moduli space of curves

For g,n > 0 such that 2g − 2 + n > 0, consider the moduli space of
curves

Mg,n :=
{
(C,p1, . . . ,pn)

∣∣∣ C cmplx cmpct curve
genus g with n marked pnts

}/
∼

which is a smooth complex orbifold of dimension 3g − 3 + n. It admits a
compactification Mg,n.

Fundamental problem

Understand H•(Mg,n), H•(Mg,n) and its intersection theory:
• generators and relations,
• differential forms representing cohomology classes,
• efficient computation of intersection numbers,
• enumerative-geometric interactions (e.g. ELSV)
• · · ·
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Different geometric models

There exists various modular interpretation of Mg,n. Alternative modular
definitions lead to different geometric structures.

• Moduli space Mcomb
g,n (~L) of metric ribbon graphs equipped with the

Kontsevich symplectic form ωK.

• Moduli space M
hyp
g,n (~L) of hyperbolic surfaces equipped with the

Weil–Petersson symplectic form ωWP.

• Moduli space Mflat
g,n(~α) of flat surfaces equipped with the Veech

volume form.

• · · ·
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The combinatorial model

The combinatorial moduli space

Mcomb
g,n (~L) :=

{
G
∣∣∣∣ G metric ribbon graph

genus g with n bndrs
of length~L

}/
isometry

has a natural symplectic form ωK.

Theorem (Jenkins–Strebel ’60s, Kontsevich ’92, Zvonkine ’02)

• For every ~L ∈ Rn
+, there is an orbifold isomorphism Mcomb

g,n (~L) ∼= Mg,n.
• The symplectic volumes are finite and given by∫

Mcomb
g,n (~L)

exp
(
ωK
)
=

∫
Mg,n

exp

( n∑
i=1

L2
i

2
ψi

)
.

• The symplectic volumes are computed recursively on 2g − 2 + n
[Witten’s conjecture].



Motivation and outline The combinatorial model Length, cut and glue The symplectic structure A Mirzakhani identity

The combinatorial model

The combinatorial moduli space

Mcomb
g,n (~L) :=

{
G
∣∣∣∣ G metric ribbon graph

genus g with n bndrs
of length~L

}/
isometry

has a natural symplectic form ωK.

Theorem (Jenkins–Strebel ’60s, Kontsevich ’92, Zvonkine ’02)

• For every ~L ∈ Rn
+, there is an orbifold isomorphism Mcomb

g,n (~L) ∼= Mg,n.
• The symplectic volumes are finite and given by∫

Mcomb
g,n (~L)

exp
(
ωK
)
=

∫
Mg,n

exp

( n∑
i=1

L2
i

2
ψi

)
.

• The symplectic volumes are computed recursively on 2g − 2 + n
[Witten’s conjecture].



Motivation and outline The combinatorial model Length, cut and glue The symplectic structure A Mirzakhani identity

The combinatorial model

The combinatorial moduli space

Mcomb
g,n (~L) :=

{
G
∣∣∣∣ G metric ribbon graph

genus g with n bndrs
of length~L

}/
isometry

has a natural symplectic form ωK.

Theorem (Jenkins–Strebel ’60s, Kontsevich ’92, Zvonkine ’02)

• For every ~L ∈ Rn
+, there is an orbifold isomorphism Mcomb

g,n (~L) ∼= Mg,n.
• The symplectic volumes are finite and given by∫

Mcomb
g,n (~L)

exp
(
ωK
)
=

∫
Mg,n

exp

( n∑
i=1

L2
i

2
ψi

)
.

• The symplectic volumes are computed recursively on 2g − 2 + n
[Witten’s conjecture].



Motivation and outline The combinatorial model Length, cut and glue The symplectic structure A Mirzakhani identity

The combinatorial model

The combinatorial moduli space

Mcomb
g,n (~L) :=

{
G
∣∣∣∣ G metric ribbon graph

genus g with n bndrs
of length~L

}/
isometry

has a natural symplectic form ωK.

Theorem (Jenkins–Strebel ’60s, Kontsevich ’92, Zvonkine ’02)

• For every ~L ∈ Rn
+, there is an orbifold isomorphism Mcomb

g,n (~L) ∼= Mg,n.
• The symplectic volumes are finite and given by∫

Mcomb
g,n (~L)

exp
(
ωK
)
=

∫
Mg,n

exp

( n∑
i=1

L2
i

2
ψi

)
.

• The symplectic volumes are computed recursively on 2g − 2 + n
[Witten’s conjecture].



Motivation and outline The combinatorial model Length, cut and glue The symplectic structure A Mirzakhani identity

Proves comparison

Kontsevich’s proof of the recursion is based on matrix model
techniques.

Sum over
ribbon graphs

ψ-classes
intersections

Airy
matrix model

recursion

comb
modelFeynman

diagrams

We propose a new proof, based on the geometric structure of
Mcomb

g,n (~L) and parallel to Mirzakhani’s proof in the hyperbolic setting.

ωK compatible with
cutting/gluing

Combinatorial
model

volume
recursion

ψ-classes
intersections

1 from
cutting/gluing
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Ribbon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each
vertex.

G
•

•

6=

G ′
•

•

We have well-defined
• genus g > 0,
• number of boundary components n > 1.

We call (g,n) the type of the ribbon graph. Boundaries are assumed
to be labeled.
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Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph G with an assignment
` : EG → R+. The space of such metrics is REG

+ .

G
•

•

G ′
•

•

1 2

3

1

57
√

2

π

57
√

2

π

`(∂1G) = 57 + π

`(∂2G) = π+
√

2

`(∂3G) = 57 +
√

2

`(∂1G ′) = 2(57 + π+
√

2)
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Example: type (0, 3)

Recall that for a fixed ribbon graph G, the space of metrics on it is REG
+ .

•

•

• •

• • ••

•

• •

∼= R3
+Mcomb

0,3 =
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The combinatorial moduli space

Define the combinatorial moduli space

Mcomb
g,n :=

⋃
G ribbon graph

of type (g,n)

R
EG
+

Aut(G)
,

where we glue orbicells through degeneration of edges.

We have a map p : Mcomb
g,n → Rn

+, assigning to each metric ribbon
graph the length of the labeled faces. We set Mcomb

g,n (~L) := p−1(~L).

Proposition (Jenkins ’57, Strebel ’67, Zvonkine ’02)

Mcomb
g,n (~L) is a real topological orbifold of dimension 6g − 6 + 2n, and

there exists a homeomorphism of topological orbifolds

Mcomb
g,n (~L) ∼= Mg,n.
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The combinatorial Teichmüller space

Consider a topological compact surface Σ of genus g > 0, with n > 1
labeled boundaries ∂1Σ, . . . ,∂nΣ.
Define the combinatorial Teichmüller space

Tcomb
Σ :=

{
G ↪→ Σ

∣∣∣ G is a MRG embedded into Σ
s.t. G is a deformation retract of Σ

}/
∼

where two embedded MRGs are identified iff
• they are isometric as MRGs,
• the embeddings are isotopic.

We have a map π : Tcomb
Σ →Mcomb

g,n , that forgets about the embedding.

•

•
a

b

c

6=

•

•
a

b

c

•

•
a

b c
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The combinatorial Teichmüller space

Again we have a map p : Tcomb
Σ → Rn

+, assigning to each metric ribbon
graph the length of the labeled faces. We set Tcomb

Σ (~L) := p−1(~L).

Proposition

• Tcomb
Σ (~L) is a real topological manifold of dimension 6g − 6 + 2n.

• The mapping class group ModΣ := Homeo+(Σ,∂Σ)/Homeo0(Σ) is
acting on Tcomb

Σ (~L), and

Tcomb
Σ (~L)/ModΣ ∼= Mcomb

g,n (~L).
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Length of simple closed curve

Fix a simple closed curve γ in Σ, and G ∈ Tcomb
Σ . Define the length of γ

with respect to G:
• homotope γ to the embedded graph,
• sum up the lengths of the edges γ travels through.

•
•

•

•

γ

a

b

c

d

e

f

•
•

•

•
a

b

c

d

e

f

`G(γ) = c + d + 2e + f .
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Cutting

Fix γ is a simple closed curve in Σ and G ∈ Tcomb
Σ .

Lemma

It is possible to cut G along γ and obtain a new embedded MRG on
the cut surface.

•
•
γ

c

a

b

•
•

c

a + b a + b
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Gluing

Fix G ∈ Tcomb
Σ , G ′ ∈ Tcomb

Σ′ , and ∂iΣ, ∂jΣ
′ boundary components such

that `G(∂iΣ) = `G′(∂jΣ
′). Fix an identification ∂iΣ ∼ ∂jΣ

′.

Lemma

For a.e. τ ∈ R, it is possible to glue G and G ′ along ∂iΣ ∼ ∂jΣ
′ with twist

τ, and obtain an embedded MRG on the glued surface.

• •
•

•
◦

◦

a

b s

r

t
c

a + b = r + s

•
••◦

•◦
r −τ

b −τ

t
c τ

a − r +τ
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Combinatorial Fenchel–Nielsen coordinates

Fix a pants decomposition P = (γ1, . . . ,γ3g−3+n) of Σ. We have a map

FN : Tcomb
Σ (~L) −→ (R+ ×R)3g−3+n

G 7−→
(
`G(γi), τG(γi)

)3g−3+n
i=1

called the combinatorial Fenchel–Nielsen coordinates.

•
•
γ

G =

c

a

b

FN(G) =
(
`G(γ), τG(γ)

)
=
(
a + b,−a

)

Question

Does
(
`G(γi), τG(γi)

)
determine G?
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Combinatorial Fenchel–Nielsen coordinates

Theorem (Andersen, Borot, Charbonnier, AG, Lewański, Wheeler)

For every choice of P, the map

FN : Tcomb
Σ (~L) −→ (R+ ×R)3g−3+n

is a homeomorphism onto its image, with an open dense image.
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The Kontsevich form

Define the Kontsevich 2-form ωK on each cell of Tcomb
Σ (~L) by

ωK :=

n∑
i=1

L2
i

2
Ψi , Ψi :=

∑
e[a]

i ≺e[b]
i

d`
e[a]

i

Li
∧

d`
e[b]

i

Li
,

where e[1]
i ,e[2]

i , . . . are the edges around the ith face of the ribbon
graph underlying the cell, and ≺ is the order on the edges induced by
the orientation of the surface.

•
•

L

c

a

b

e[1] = a, e[2] = b, e[3] = c

e[4] = a, e[5] = b, e[6] = c

Ψ1 = 2
L2

(
da ∧ db + da ∧ dc + db ∧ dc

)
ωK = da ∧ db + da ∧ dc + db ∧ dc
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The symplectic volumes

Theorem (Kontsevich ’92, Zvonkine ’02)

• The form ωK on Tcomb
Σ (~L) is symplectic and MCG invariant

• The symplectic volume Vg,n(~L) of Mcomb
g,n (~L) is finite and given by∫

Mcomb
g,n (~L)

exp
(
ωK
)
=

∫
Mg,n

exp

( n∑
i=1

L2
i

2
ψi

)
.

Upshot: the computation of all 〈τd1 · · · τdn〉g is equivalent to the

computation of the symplectic volume Vg,n(~L).
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A combinatorial Wolpert formula

Theorem (ABCGLW ’20)

For every choice of pants decomposition on Σ, we have a global
coordinates (`i , τi)

3g−3+n
i=1 on Tcomb

Σ (~L). Then

ωK =

3g−3+n∑
i=1

d`i ∧ dτi .

•
•
γ

L

c

a

b

ωK = da ∧ db + db ∧ dc + da ∧ dc

d`∧ dτ = d(a + b)∧ d(−a) = da ∧ db

d(2a + 2b + 2c) = 0 =⇒ ωK = d`∧ dτ

Upshot: ωK is compatible with cutting/gluing of embedded MRGs.
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A combinatorial McShane identity

Let T be a torus with one boundary component.

Theorem (ABCGLW ’20)

For any G ∈ Tcomb
T (L), we have

L =
∑
γ

simple closed curve

[
L − 2`G(γ)

]
+
.

Here [x ]+ := max(x , 0).

V1,1(L) =

∫
Mcomb

1,1 (L)
ωK =

1
2

∫∞
0

d` `

[
L − 2`

]
+

L
=

L2

48

V1,1(L) =
L2

2

∫
M1,1

ψ1

=⇒
∫
M1,1

ψ1 =
1

24
.
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A combinatorial Mirzakhani identity

Consider the following auxiliary functions D,R : R3
+ → R+:

D(L, `, ` ′) := [L − `− ` ′]+

R(L, L ′, `) := 1
2

(
[L − L ′ − `]+ − [−L + L − `]+ + [L + L ′ − `]+

)
Theorem (ABCGLW ’20)

For any G ∈ Tcomb
Σ (~L), we have

L1 =

n∑
i=2

∑
γ

R
(
L1, Li , `G(γ)

)
+ 1

2

∑
γ,γ′

D
(
L1, `G(γ), `G(γ

′)
)
.

Here, the first sum is over simple closed curves γ bounding a pair of
pants with ∂1Σ and ∂iΣ, and the second sum is over all pairs of simple
closed curves γ,γ ′ bounding a pair of pants with ∂1Σ.
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Witten–Kontsevich recursion

combinatorial
Wolpert formula

combinatorial
Mirzakhani identity

recursion for Vg,n(~L)

The Kontsevich volumes are computed recursively by

Vg,n(L1, . . . , Ln) =

n∑
i=2

∫
R+

d` `
R(L1, Li , `)

L1
Vg,n−1(`, L2, . . . , L̂i , . . . , Ln)

+ 1
2

∫
R2
+

d`d`′ ``′
D(L1, `, `

′)

L1

(
Vg−1,n+1(`, `

′, L2, . . . , Ln)

+
∑

h+h′=g
JtJ ′={L2 ,...,Ln}

Vh,1+|J|(`, J)Vh′ ,1+|J ′|(`
′, J ′)

)
.

with initial conditions V0,3(L1, L2, L3) = 1 and V1,1(L) = L2

48 .
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Integral structure

Definition

A metric ribbon graph G is called integral if the length of every edge is
a positive integer.

ZMcomb
g,n (~L) :=

{
integral MRGs

type (g,n) and boundary~L

}
⊂Mcomb

g,n (~L).

We can count integral points as

Ng,n(~L) :=
∑

G∈ZMcomb
g,n (~L)

1
Aut(G)

.

Idea. Ng,n(~L) is the volume of the combinatorial moduli space w.r.t the
“counting measure”, that is Dirac deltas at the integral points.
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Norbury recursion from Mirzakhani

integral structure
ZMcomb

g,n

combinatorial
Mirzakhani identity

recursion for Ng,n(~L)

The numbers of integral MRGs are computed recursively by

Ng,n(L1, . . . , Ln) =

n∑
i=2

∑
`>1

`
R(L1, Li , `)

L1
Ng,n−1(`, L2, . . . , L̂i , . . . , Ln)

+ 1
2

∑
`,`′>1

``′
D(L1, `, `

′)

L1

(
Ng−1,n+1(`, `

′, L2, . . . , Ln)

+
∑

h+h′=g
JtJ ′={L2 ,...,Ln}

Nh,1+|J|(`, J)Nh′ ,1+|J ′|(`
′, J ′)

)
.

with N0,3(L1, L2, L3) =
1+(−1)L1+L2+L3

2 and N1,1(L) =
1+(−1)L

2
L2−4

48 .
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Multicurve count

Define NΣ : T
comb
Σ × R+ → N the counting

function,

NΣ(G; t) := #
{
γ
∣∣ multicurve in Σ

with `G(γ) 6 t

}
.

Theorem (ABCGLW ’20)

• The counting function NΣ(G; t) is computed by a Mirzakhani-type
recursion (geometric recursion).

• It is MCG invariant, and its mean value

〈Ng,n〉 (~L; t) :=
∫
Mcomb

g,n (~L)
Ng,n(G; t)

ω
3g−3+n
K

(3g − 3 + n)!

is computed by topological recursion.
• Taking the asymptotic as t →∞, we get the Masur–Veech volumes

of the moduli space of quadratic differentials.
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To conclude we obtained:

• global length/twist coord’s on Tcomb
Σ (~L)

• a combinatorial Wolpert formula for ωK

• a Mirzakhani identity, from which we gave a geometric proof of:
◦ Witten–Kontsevich recursion for symplectic volumes/ψ-intersections
◦ Norbury’s recursion for lattice pnts

• a recursion for the multicurve counting and Masur–Veech volumes

∗ a PL manifold structure on Tcomb
Σ (~L)

∗ a flow σt : Thyp
Σ (~L)→ T

hyp
Σ (~L) that limits to Tcomb

Σ (~L)

Possible generalisations (?):

• moduli space of super curves

• moduli space of real curves
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Thank you!
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Measured foliations Kernels EO topological recursion

Embedded MRGs and measured foliations

Every embedded MRG G ∈ Tcomb
Σ defines an (isotopy class of)

measured foliations on Σ. Locally:

• • • •

Measured foliations dual to embedded MRGs
• are always transverse to ∂Σ,
• do not contain saddle connections (i.e. singular leaves

connecting singular points).
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Example of cutting/gluing

•
•

a

c

b
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Example of cutting/gluing

•
•

c

a + b a + b
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Non-admissible gluing

•

•

•

•
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Non-admissible gluing

•

•

•

•
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Geometric kernels

Lemma

For a fixed pair of pants P, identify R3
+

∼= Tcomb
P .

• The function
D(L, `, ` ′) := [L − `− ` ′]+

associates to a point (L, `, ` ′) ∈ Tcomb
P the fraction of ∂1P that is not

common with ∂2P ∪ ∂3P (once retracted to the graph).
• The function

R(L, L ′, `) := 1
2

(
[L − L ′ − `]+ − [−L + L − `]+ + [L + L ′ − `]+

)
associates to (L, L ′, `) ∈ Tcomb

P the fraction of the ∂1P that is not common
with ∂3P (once retracted to the graph).

• •∂2P ∂3P

∂1P

••◦

∂2P ∂3P

∂1P
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Spectral curves

• Symplectic volumes Vg,n(~L):

C = C x(z) =
z2

2
y(z) = z B(z1, z2) =

dz1dz2

(z1 − z2)2

• Lattice point count Ng,n(~L):

C = C x(z) = z +
1
z

y(z) = z B(z1, z2) =
dz1dz2

(z1 − z2)2

• Average number of multicurves 〈Ng,n〉 (~L; t) of length 6 t :

C = C x(z) =
z2

2
y(z) = z

B(z1, z2) =

(
1

(z1 − z2)2 +
(sπ)2

sin2(sπ(z1 − z2)
))dz1dz2

2
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