Séminaire de Géométrie énumérative

Geometry of combinatorial moduli spaces and multicurve counts

j/w J.E. Andersen, G. Borot, S. Charbonnier, D. Lewański, C. Wheeler arXiv:2010.11806 [math.DG]

Alessandro Giacchetto

MPIM Bonn

December 10th, 2020

Motivation and outline ●000		Length, cut and glue 00000	A Mirzakhani identity 000000
Moduli spac	e of curves		

For $g, n \ge 0$ such that 2g - 2 + n > 0, consider the moduli space of curves

$$\mathcal{M}_{g,n} \coloneqq \left\{ \left. (C, p_1, \dots, p_n) \right| \begin{array}{c} C \text{ cmplx cmpct curve} \\ \text{genus } g \text{ with } n \text{ marked pnts} \end{array} \right\} \Big/$$

which is a smooth complex orbifold of dimension 3g-3+n. It admits a compactification $\overline{\mathcal{M}}_{g,n}$.

Fundamental problem

Understand $H^{\bullet}(\mathcal{M}_{g,n})$, $H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ and its intersection theory:

- generators and relations,
- differential forms representing cohomology classes,
- efficient computation of intersection numbers,
- enumerative-geometric interactions (*e.g.* ELSV)

• . . .

Motivation and outline ●000		Length, cut and glue 00000	A Mirzakhani identity 000000
Moduli spac	e of curves		

For $g, n \ge 0$ such that 2g - 2 + n > 0, consider the moduli space of curves

$$\mathcal{M}_{g,n} \coloneqq \left\{ \left. (C, p_1, \dots, p_n) \right| \begin{array}{c} C \text{ cmplx cmpct curve} \\ \text{genus } g \text{ with } n \text{ marked pnts} \end{array} \right\} \Big/$$

which is a smooth complex orbifold of dimension 3g-3+n. It admits a compactification $\overline{\mathcal{M}}_{g,n}$.

Fundamental problem

Understand $H^{\bullet}(\mathcal{M}_{g,n})$, $H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ and its intersection theory:

- generators and relations,
- differential forms representing cohomology classes,
- efficient computation of intersection numbers,
- enumerative-geometric interactions (e.g. ELSV)

• ...

Motivation and outline 0●00	Length, cut and glue 00000	A Mirzakhani identity 000000

There exists various modular interpretation of $\mathcal{M}_{g,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_{K} .
- Moduli space $\mathcal{M}_{g,n}^{\text{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the Weil–Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{g,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech volume form.

• • • • •

Motivation and outline 0●00	Length, cut and glue 00000	A Mirzakhani identity 000000

There exists various modular interpretation of $\mathcal{M}_{g,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathcal{M}_{g,n}^{comb}(\vec{L})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_{K} .
- Moduli space $\mathcal{M}_{g,n}^{\text{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the Weil–Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{g,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech volume form.

• • • •

Motivation and outline 0●00		Length, cut and glue 00000		A Mirzakhani identity 000000	
D''' and a second barrier shale					

There exists various modular interpretation of $\mathcal{M}_{g,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_{K} .
- Moduli space $\mathcal{M}_{g,n}^{\text{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the Weil–Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{g,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech volume form.

• • • •

Motivation and outline 0●00		Length, cut and glue 00000		A Mirzakhani identity 000000	

There exists various modular interpretation of $\mathcal{M}_{g,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_{K} .
- Moduli space $\mathcal{M}_{g,n}^{\text{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the Weil–Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{g,n}^{\rm flat}(\vec{\alpha})$ of flat surfaces equipped with the Veech volume form.

• ...

Motivation and outline 00●0	Length, cut and glue 00000	A Mirzakhani identity 000000

The combinatorial model

The combinatorial moduli space

$$\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} G \mid \substack{G \text{ metric ribbon graph} \\ \text{genus } g \text{ with } n \text{ bndrs} \\ \text{of length } \vec{L} \end{array} \right\} \middle/ \text{isometry}$$

has a natural symplectic form ω_{K} .

Theorem (Jenkins–Strebel '60s, Kontsevich '92, Zvonkine '02)

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathcal{M}_{a,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\overline{L})} \exp(\omega_{K}) = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i}\right).$$

Motivation and outline		Length, cut and glue 00000	A Mirzakhani identity 000000
The combine	atorial model		

$$\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} G \mid \stackrel{G \text{ metric ribbon graph}}{genus g \text{ with } n \text{ bndrs}} \\ \text{of length } \vec{L} \end{array} \right\} \middle/ \text{isometry}$$

has a natural symplectic form ω_{K} .

Theorem (Jenkins-Strebel '60s, Kontsevich '92, Zvonkine '02)

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp(\omega_{K}) = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i}\right).$$

Motivation and outline		Length, cut and glue 00000	A Mirzakhani identity 000000
The combine	atorial model		

$$\mathfrak{M}_{g,n}^{\mathsf{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} G & \text{Greatric ribbon graph} \\ genus g \text{ with } n \text{ bndrs} \\ \text{of length } \vec{L} \end{array} \right\} \Big/ \text{isometry}$$

has a natural symplectic form ω_{K} .

Theorem (Jenkins-Strebel '60s, Kontsevich '92, Zvonkine '02)

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp(\omega_{K}) = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i}\right).$$

Motivation and outline		Length, cut and glue 00000	A Mirzakhani identity 000000
The combine	atorial model		

$$\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} G \mid \stackrel{G \text{ metric ribbon graph}}{genus g \text{ with } n \text{ bndrs}} \\ \text{of length } \vec{L} \end{array} \right\} \middle/ \text{isometry}$$

has a natural symplectic form ω_{K} .

Theorem (Jenkins-Strebel '60s, Kontsevich '92, Zvonkine '02)

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp(\omega_{K}) = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i}\right).$$

	The combinatorial model ●00000	Length, cut and glue 00000	A Mirzakhani identity 000000
Ribbon grap	ohs		

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

We have well-defined

- genus $g \ge 0$,
- number of boundary components $n \ge 1$.

The combinatorial model ●00000	Length, cut and glue 00000	A Mirzakhani identity 000000
, h a		

Rippon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

We have well-defined

- genus $g \ge 0$,
- number of boundary components $n \ge 1$.

	The combinatorial model ●00000	Length, cut and glue 00000		A Mirzakhani identity 000000	
Dilahan aranda					

Rippon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

G'

We have well-defined

- genus $g \ge 0$,
- number of boundary components $n \ge 1$.

	The combinatorial model ●00000	Length, cut and glue 00000	A Mirzakhani identity 000000
Ribbon grap	ohs		

0.1

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

We have well-defined

- genus $g \ge 0$,
- number of boundary components $n \ge 1$.

The combinatorial model 0●0000	Length, cut and glue 00000	A Mirzakhani identity 000000

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

 $\ell(\partial_1 G) = 57 + \pi$ $\ell(\partial_2 G) = \pi + \sqrt{2}$ $\ell(\partial_3 G) = 57 + \sqrt{2}$

 $\ell(\partial_1 G') = 2(57 + \pi + \sqrt{2})$

The combinatorial model 0●0000	Length, cut and glue 00000	A Mirzakhani identity 000000

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

$$\ell(\mathfrak{d}_1 G') = 2(57 + \pi + \sqrt{2})$$

The combinatorial model 0●0000	Length, cut and glue 00000	A Mirzakhani identity 000000

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

 $\ell(\partial_1 G) = 57 + \pi$ $\ell(\partial_2 G) = \pi + \sqrt{2}$ $\ell(\partial_3 G) = 57 + \sqrt{2}$

$$\ell(\partial_1 G') = 2(57 + \pi + \sqrt{2})$$

The combinatorial model 0●0000	Length, cut and glue 00000	A Mirzakhani identity 000000

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

 $\ell(\partial_1 G) = 57 + \pi$ $\ell(\partial_2 G) = \pi + \sqrt{2}$ $\ell(\partial_3 G) = 57 + \sqrt{2}$

$$\ell(\mathfrak{d}_1 G') = 2(57 + \pi + \sqrt{2})$$

The combinatorial model 0●0000	Length, cut and glue 00000	A Mirzakhani identity 000000

Definition

A metric ribbon graph is a ribbon graph *G* with an assignment $\ell: E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}^{E_G}_+$.

$$\begin{split} \ell(\partial_1 G) &= 57 + \pi\\ \ell(\partial_2 G) &= \pi + \sqrt{2}\\ \ell(\partial_3 G) &= 57 + \sqrt{2} \end{split}$$

$$\ell(\mathfrak{d}_1 G') = 2(57 + \pi + \sqrt{2})$$

	The combinatorial model 00●000	Length, cut and glue 00000	A Mirzakhani identity 000000
Example: typ	oe (0,3)		

Recall that for a fixed ribbon graph G, the space of metrics on it is $\mathbb{R}_+^{E_G}$.

Recall that for a fixed ribbon graph G, the space of metrics on it is $\mathbb{R}^{E_G}_+$.

Recall that for a fixed ribbon graph G, the space of metrics on it is $\mathbb{R}^{E_G}_+$.

The combinatorial model 000●00	Length, cut and glue 00000	A Mirzakhani identity 000000

Define the combinatorial moduli space

$$\mathfrak{M}_{g,n}^{\mathsf{comb}}\coloneqq\bigcup_{\substack{G \text{ ribbon graph}\\ \text{ of type }(g,n)}}\frac{\mathbb{R}_{+}^{\mathbb{E}_{G}}}{\mathsf{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) := p^{-1}(\vec{L})$.

Proposition (Jenkins '57, Strebel '67, Zvonkine '02)

 $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ is a real topological orbifold of dimension 6g - 6 + 2n, and there exists a homeomorphism of topological orbifolds

 $\mathcal{M}_{g,n}^{\mathrm{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}.$

The combinatorial model 000●00	Length, cut and glue 00000	A Mirzakhani identity 000000

Define the combinatorial moduli space

$$\mathfrak{M}^{\mathrm{comb}}_{g,n}\coloneqq \bigcup_{\substack{G \text{ ribbon graph} \\ \text{ of type } (g,n)}} \frac{\mathbb{R}^{E_G}_+}{\mathrm{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) := p^{-1}(\vec{L})$.

Proposition (Jenkins '57, Strebel '67, Zvonkine '02)

 $\mathcal{M}_{g,n}^{comb}(\vec{L})$ is a real topological orbifold of dimension 6g-6+2n, and there exists a homeomorphism of topological orbifolds

 $\mathcal{M}_{g,n}^{\mathrm{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}.$

The combinatorial model 000●00	Length, cut and glue 00000	A Mirzakhani identity 000000

Define the combinatorial moduli space

$$\mathcal{M}^{\mathsf{comb}}_{g,n} \coloneqq \bigcup_{\substack{G \text{ ribbon graph} \\ \text{ of type } (g,n)}} \frac{\mathbb{R}^{E_G}_+}{\mathsf{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) := p^{-1}(\vec{L})$.

Proposition (Jenkins '57, Strebel '67, Zvonkine '02)

 $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ is a real topological orbifold of dimension 6g - 6 + 2n, and there exists a homeomorphism of topological orbifolds

 $\mathcal{M}_{g,n}^{\mathrm{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}.$

The combinatorial model		
000000		

Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

Define the combinatorial Teichmüller space

 $\mathcal{T}_{\Sigma}^{\mathsf{comb}} \coloneqq \left\{ G \hookrightarrow \Sigma \; \middle| \; \substack{G \text{ is a MRG embedded into } \Sigma \\ \text{s.t. } G \text{ is a deformation retract of } \Sigma \right\} \Big/ \text{-}$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathfrak{T}_{\Sigma}^{comb} \to \mathfrak{M}_{a,n}^{comb}$, that forgets about the embedding.

The combinatorial model 0000●0	Length, cut and glue 00000	A Mirzakhani identity 000000

Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

Define the combinatorial Teichmüller space

$$\mathfrak{T}^{comb}_{\Sigma}\coloneqq \left\{ G\hookrightarrow \Sigma \; \middle| \; \begin{smallmatrix} \mathsf{G} \text{ is a MRG embedded into } \Sigma \\ \text{s.t. } \mathsf{G} \text{ is a deformation retract of } \Sigma \end{smallmatrix} \right\} \Big/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathcal{M}_{a,n}^{\text{comb}}$, that forgets about the embedding.

The combinatorial model 0000●0	Length, cut and glue 00000	A Mirzakhani identity 000000

Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

Define the combinatorial Teichmüller space

$$\mathfrak{T}^{\mathsf{comb}}_{\Sigma} \coloneqq \left\{ G \hookrightarrow \Sigma \; \middle| \; \begin{smallmatrix} \mathsf{G} \text{ is a MRG embedded into } \Sigma \\ \mathsf{s.t. } \mathsf{G} \text{ is a deformation retract of } \Sigma \end{smallmatrix} \right\} \Big/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathcal{M}_{a,n}^{\text{comb}}$, that forgets about the embedding.

The combinatorial model 0000●0	Length, cut and glue 00000	A Mirzakhani identity 000000

Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

Define the combinatorial Teichmüller space

$$\mathfrak{T}^{\mathsf{comb}}_{\Sigma} \coloneqq \left\{ G \hookrightarrow \Sigma \; \middle| \; \substack{\mathsf{G} \text{ is a MRG embedded into } \Sigma \\ \text{s.t. } \mathsf{G} \text{ is a deformation retract of } \Sigma } \right\} \big/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathfrak{T}^{\text{comb}}_{\Sigma} \to \mathfrak{M}^{\text{comb}}_{q,n}$, that forgets about the embedding.

The combinatorial model 0000●0	Length, cut and glue 00000	A Mirzakhani identity 000000

Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

Define the combinatorial Teichmüller space

$$\mathfrak{T}^{\mathsf{comb}}_{\Sigma} \coloneqq \left\{ G \hookrightarrow \Sigma \; \middle| \; \substack{\mathsf{G} \text{ is a MRG embedded into } \Sigma \\ \text{s.t. } \mathsf{G} \text{ is a deformation retract of } \Sigma } \right\} \big/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathfrak{M}_{a,n}^{\text{comb}}$, that forgets about the embedding.

The combinatorial model 00000●	Length, cut and glue 00000	A Mirzakhani identity 000000

Again we have a map $p: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathbb{R}_{+}^{n}$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L}) \coloneqq p^{-1}(\vec{L})$.

Proposition

• $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L})$ is a real topological manifold of dimension 6g-6+2n.

• The mapping class group $\mathsf{Mod}_{\Sigma} \coloneqq \mathsf{Homeo}^+(\Sigma, \partial \Sigma) / \mathsf{Homeo}_0(\Sigma)$ is acting on $\mathcal{T}_{\Sigma}^{\mathsf{comb}}(\vec{L})$, and

 $\mathfrak{T}_{\Sigma}^{\operatorname{comb}}(\vec{L})/\operatorname{\mathsf{Mod}}_{\Sigma}\cong \mathfrak{M}_{g,n}^{\operatorname{comb}}(\vec{L}).$

The combinatorial model 00000●	Length, cut and glue 00000	A Mirzakhani identity 000000

Again we have a map $p: \mathfrak{T}_{\Sigma}^{\text{comb}} \to \mathbb{R}_{+}^{n}$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L}) \coloneqq p^{-1}(\vec{L})$.

Proposition

- $\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L})$ is a real topological manifold of dimension 6g 6 + 2n.
- The mapping class group $\mathsf{Mod}_{\Sigma} \coloneqq \mathsf{Homeo}^+(\Sigma, \partial \Sigma) / \mathsf{Homeo}_0(\Sigma)$ is acting on $\mathcal{T}_{\Sigma}^{comb}(\vec{L})$, and

 $\mathfrak{T}_{\Sigma}^{\operatorname{comb}}(\vec{L})/\operatorname{\mathsf{Mod}}_{\Sigma}\cong \mathfrak{M}_{g,n}^{\operatorname{comb}}(\vec{L}).$

	Length, cut and glue ●0000	A Mirzakhani identity 000000

Length of simple closed curve

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{\text{comb}}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

 $\ell_{\rm G}(\gamma) = c + d + 2e + f.$
	Length, cut and glue ●0000	A Mirzakhani identity 000000

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{\text{comb}}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

	Length, cut and glue ●0000	A Mirzakhani identity 000000

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

	Length, cut and glue ●0000	A Mirzakhani identity 000000

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

	Length, cut and glue ●0000	A Mirzakhani identity 000000

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

	Length, cut and glue ●0000	A Mirzakhani identity 000000

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

	Length, cut and glue ●0000	A Mirzakhani identity 000000

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}_{\Sigma}^{comb}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

	Length, cut and glue 0●000	A Mirzakhani identity 000000
Cutting		

Lemma

It is possible to $cut\ G$ along γ and obtain a new embedded MRG on the cut surface.

	Length, cut and glue 0●000	A Mirzakhani identity 000000
Cutting		

Lemma

It is possible to $\mbox{cut}\ G$ along γ and obtain a new embedded MRG on the cut surface.

	Length, cut and glue 0●000	A Mirzakhani identity 000000
Cutting		

Lemma

It is possible to cut $\mathbb G$ along γ and obtain a new embedded MRG on the cut surface.

	Length, cut and glue 0●000	A Mirzakhani identity 000000
Cutting		

Lemma

It is possible to cut $\mathbb G$ along γ and obtain a new embedded MRG on the cut surface.

Motivo 0000	ation and outline	The combinatorial model	Length, cut and glue 00●00	The symplectic structure	A Mirzakhani identity 000000
Glu	uing				
	$F_{\rm b} = \sigma_{\rm com}$				

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue G and G' along $\partial_t \Sigma \sim \partial_j \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

	Length, cut and glue 00●00	A Mirzakhani identity 000000
Gluing		

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue G and G' along $\partial_t \Sigma \sim \partial_j \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

	Length, cut and glue 00●00	A Mirzakhani identity 000000
Gluing		

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue G and G' along $\partial_i \Sigma \sim \partial_j \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

	Length, cut and glue 00●00	A Mirzakhani identity 000000
Gluing		

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue G and G' along $\partial_i \Sigma \sim \partial_j \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

	Length, cut and glue 00●00	A Mirzakhani identity 000000
Gluing		

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue G and G' along $\partial_i \Sigma \sim \partial_j \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

	Length, cut and glue 000●0	A Mirzakhani identity 000000

F

Fix a pants decomposition $\mathcal{P} = (\gamma_1, \dots, \gamma_{3g-3+n})$ of Σ . We have a map

$$\begin{split} & \mathbb{T}_{\Sigma}^{\mathsf{comb}}(\vec{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n} \\ & \mathbb{G} \longmapsto \left(\ell_{\mathbb{G}}(\gamma_{i}), \tau_{\mathbb{G}}(\gamma_{i}) \right)_{i=1}^{3g-3+n} \end{split}$$

called the combinatorial Fenchel-Nielsen coordinates.

 $\mathsf{FN}(\mathbb{G}) = (\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma))$ = (a + b, -a)

Question

Does $(\ell_{\mathbb{G}}(\gamma_i), \tau_{\mathbb{G}}(\gamma_i))$ determine \mathbb{G} ?

	Length, cut and glue 000●0	A Mirzakhani identity 000000

F

Fix a pants decomposition $\mathcal{P} = (\gamma_1, \dots, \gamma_{3g-3+n})$ of Σ . We have a map

$$\begin{split} & \mathbb{N} \colon \mathfrak{T}_{\Sigma}^{\mathsf{comb}}(\vec{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n} \\ & \mathbb{G} \longmapsto \left(\ell_{\mathbb{G}}(\gamma_{i}), \tau_{\mathbb{G}}(\gamma_{i}) \right)_{i=1}^{3g-3+n} \end{split}$$

called the combinatorial Fenchel-Nielsen coordinates.

 $\begin{aligned} \mathsf{FN}(\mathbb{G}) &= \big(\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma) \big) \\ &= \big(a + b, -a \big) \end{aligned}$

Question

Does $(\ell_{\mathbb{G}}(\gamma_i), \tau_{\mathbb{G}}(\gamma_i))$ determine \mathbb{G} ?

	Length, cut and glue 000●0	A Mirzakhani identity 000000

F

Fix a pants decomposition $\mathcal{P} = (\gamma_1, \dots, \gamma_{3g-3+n})$ of Σ . We have a map

$$\begin{split} & \mathbb{N} \colon \mathfrak{T}_{\Sigma}^{\mathsf{comb}}(\vec{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n} \\ & \mathbb{G} \longmapsto \left(\ell_{\mathbb{G}}(\gamma_{i}), \tau_{\mathbb{G}}(\gamma_{i}) \right)_{i=1}^{3g-3+n} \end{split}$$

called the combinatorial Fenchel-Nielsen coordinates.

$$\begin{split} \mathsf{FN}(\mathbb{G}) &= \big(\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma) \big) \\ &= \big(a + b, -a \big) \end{split}$$

Question

Does $(\ell_{\mathbb{G}}(\gamma_i), \tau_{\mathbb{G}}(\gamma_i))$ determine \mathbb{G} ?

	Length, cut and glue	
	00000	

Theorem (Andersen, Borot, Charbonnier, AG, Lewański, Wheeler)

For every choice of \mathcal{P} , the map

$$\mathsf{FN}: \mathfrak{T}^{\mathsf{comb}}_{\Sigma}(\vec{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n}$$

is a homeomorphism onto its image, with an open dense image.

	Length, cut and glue 00000	The symplectic structure ●00	A Mirzakhani identity 000000

The Kontsevich form

Define the Kontsevich 2-form ω_{K} on each cell of $\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L})$ by

$$\omega_{\mathsf{K}} \coloneqq \sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \Psi_{i}, \qquad \Psi_{i} \coloneqq \sum_{e_{i}^{[\sigma]} \prec e_{i}^{[b]}} \frac{d\ell_{e_{i}^{[\sigma]}}}{L_{i}} \wedge \frac{d\ell_{e_{i}^{[b]}}}{L_{i}},$$

where $e_i^{[1]}, e_i^{[2]}, \ldots$ are the edges around the *i*th face of the ribbon graph underlying the cell, and \prec is the order on the edges induced by the orientation of the surface.

 $\Psi_1 = \frac{2}{l^2} (da \wedge db + da \wedge dc + db \wedge dc)$ $\omega_{\rm K} = da \wedge db + da \wedge dc + db \wedge dc$

	Length, cut and glue 00000	The symplectic structure ●00	A Mirzakhani identity 000000

The Kontsevich form

Define the Kontsevich 2-form ω_{K} on each cell of $\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L})$ by

$$\omega_{\mathsf{K}} \coloneqq \sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \Psi_{i}, \qquad \Psi_{i} \coloneqq \sum_{e_{i}^{[\mathcal{O}]} \prec e_{i}^{[\mathcal{D}]}} \frac{\mathcal{d}\ell_{e_{i}^{[\mathcal{O}]}}}{L_{i}} \wedge \frac{\mathcal{d}\ell_{e_{i}^{[\mathcal{D}]}}}{L_{i}},$$

where $e_i^{[1]}, e_i^{[2]}, \ldots$ are the edges around the *i*th face of the ribbon graph underlying the cell, and \prec is the order on the edges induced by the orientation of the surface.

$$\begin{split} \Psi_1 &= \frac{2}{l^2} \big(da \wedge db + da \wedge dc + db \wedge dc \big) \\ \omega_K &= da \wedge db + da \wedge dc + db \wedge dc \end{split}$$

	Length, cut and glue 00000	The symplectic structure ○●○	A Mirzakhani identity 000000

The symplectic volumes

Theorem (Kontsevich '92, Zvonkine '02)

- The form ω_{K} on $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L})$ is symplectic and MCG invariant
- The symplectic volume $V_{g,n}(\vec{L})$ of $\mathcal{M}_{g,n}^{\mathrm{comb}}(\vec{L})$ is finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp(\omega_{\mathsf{K}}) = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i}\right).$$

Upshot: the computation of all $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g$ is equivalent to the computation of the symplectic volume $V_{g,n}(\vec{L})$.

	Length, cut and glue 00000	The symplectic structure ○●○	A Mirzakhani identity 000000

The symplectic volumes

Theorem (Kontsevich '92, Zvonkine '02)

- The form ω_{K} on $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L})$ is symplectic and MCG invariant
- The symplectic volume $V_{g,n}(\vec{L})$ of $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ is finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp(\omega_{K}) = \int_{\overline{\mathcal{M}}_{g,n}} \exp\left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i}\right).$$

Upshot: the computation of all $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g$ is equivalent to the computation of the symplectic volume $V_{g,n}(\vec{L})$.

	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity 000000

Theorem (ABCGLW '20)

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_{\mathsf{K}} = \sum_{i=1}^{3g-3+n} d\ell_i \wedge d\tau_i.$$

 $\omega_{\rm K} = da \wedge db + db \wedge dc + da \wedge dc$

$$dl \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db$$

 $d(2a+2b+2c) = 0 \implies \omega_{\rm K} = d\ell \wedge d\tau$

	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity 000000

Theorem (ABCGLW '20)

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_{\mathsf{K}} = \sum_{i=1}^{3g-3+n} d\ell_i \wedge d\tau_i.$$

 $\omega_{K} = da \wedge db + db \wedge dc + da \wedge dc$ $d\ell \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db$

 $d(2a+2b+2c) = 0 \implies \omega_{\rm K} = d\ell \wedge d\tau$

	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity 000000

Theorem (ABCGLW '20)

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_{\mathsf{K}} = \sum_{i=1}^{3g-3+n} d\ell_i \wedge d\tau_i.$$

$$\omega_{\rm K} = da \wedge db + db \wedge dc + da \wedge dc$$
$$d\ell \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db$$
$$d(2a+2b+2c) = 0 \implies \omega_{\rm K} = d\ell \wedge d\tau$$

	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity 000000

Theorem (ABCGLW '20)

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_{\mathsf{K}} = \sum_{i=1}^{3g-3+n} d\ell_i \wedge d\tau_i.$$

$$\omega_{\rm K} = da \wedge db + db \wedge dc + da \wedge dc$$
$$d\ell \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db$$
$$d(2a+2b+2c) = 0 \implies \omega_{\rm K} = d\ell \wedge d\tau$$

Motiva 0000			Length, cut and glue 00000		A Mirzakhani identity ©00000
Ac	ombinato	orial McShane i	dentity		
	Let T be a [.]	torus with one bou	indary compone	ent.	
	For any $\mathbb{G} \in$	$\mathfrak{T}_{T}^{comb}(L)$, we have			
			$\sum [1-2l_{\text{C}}]$		

simple closed curve

		Length, cut and glue 00000		A Mirzakhani identity
A combinate	orial McShane	identity		
Let T be a	torus with one bo	undary compon	ent.	
Theorem (,	ABCGLW '20)			

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{I}(L)$, we have

$$L = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \left[L - 2\ell_{\mathbb{G}}(\gamma) \right]_+.$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} \omega_{\text{K}} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{[L - 2\ell]_{+}}{L} = \frac{L^{2}}{48}$$
$$V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}$$

		Length, cut and glue 00000		A Mirzakhani identity
A combinat	orial McShane	identity		
Let T be a	torus with one bo	undary compon	ient.	
Theorem (ABCGLW '20)			

For any $\mathbb{G} \in \mathfrak{T}_{I}^{\text{comb}}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} \omega_{\text{K}} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{[L - 2\ell]_{+}}{L} = \frac{L^{2}}{48}$$
$$V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}$$

$$\int_{\overline{\mathcal{M}}_{1,1}}\psi_1=\frac{1}{24}.$$

		Length, cut and glue 00000		A Mirzakhani identity
A combinat	orial McShane	identity		
Let T be a	torus with one bo	undary compon	ient.	
Theorem (ABCGLW '20)			

For any $\mathbb{G} \in \mathfrak{T}_{I}^{\text{comb}}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} \omega_{\mathsf{K}} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{[L - 2\ell]_{+}}{L} = \frac{L^{2}}{48}$$
$$V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}$$

Motivation and outline	The combinatorial model 000000	Length, cut and glue 00000	The symplectic structure 000	A Mirzakhani identity ©00000
A combinat	orial McShane	identity		
Let 7 be a	torus with one bo	undary compon	ient.	
Theorem (ABCGLW '20)			

For any $\mathbb{G} \in \mathfrak{T}_{I}^{\operatorname{comb}}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

		Length, cut and glue 00000		A Mirzakhani identity ©00000
A combinate	orial McShane i	dentity		
Let T be a	torus with one bou	undary compon	ent.	
Theorem (ABCGLW '20)				

For any $\mathbb{G} \in \mathfrak{T}_{I}^{\text{comb}}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

		Length, cut and glue 00000		A Mirzakhani identity
A combinat	orial McShane	identity		
Let T be a	torus with one bo	undary compor	nent.	
Theorem (ABCGLW '20)			
For any G	$ \subset T^{comb}(I) $ we have			

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

Here $[x]_+ \coloneqq \max(x, 0)$.

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} 1 \cdot \omega_{\mathsf{K}} = \frac{1}{2} \int_{0}^{\frac{L}{2}} d\ell \, \ell \, \frac{L - 2\ell}{L} = \frac{L^{2}}{48}$$
$$= V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}$$

Motivation and outline	The combinatorial model 000000	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity ©00000
A combinat	orial McShane	identity		
Let T be a	torus with one bo	undary compor	nent.	
Theorem ((ABCGLW '20)			
For any G	$\in \mathfrak{T}_{I}^{comb}(L)$, we have	/e		

 $1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$

Here $[x]_+ \coloneqq \max(x, 0)$.

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{comb}(L)} 1 \cdot \omega_{\mathsf{K}} = \frac{1}{2} \int_{0}^{\frac{L}{2}} d\ell \, \ell \, \frac{L - 2\ell}{L} = \frac{L^{2}}{48}$$

$$\implies V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}$$

Motivation and outline	The combinatorial model	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity ©00000
A combina	torial McShane	identity		
Let T be o	a torus with one bo	undary compon	ient.	
Theorem	(ABCGLW '20)			

For any $\mathbb{G} \in \mathfrak{T}_{I}^{\mathsf{comb}}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

Here $[x]_+ \coloneqq \max(x, 0)$.
Motivation and outline	The combinatorial model 000000	Length, cut and glue 00000	The symplectic structure	A Mirzakhani identity
A combinat	orial McShane	identity		
Let T be a	torus with one bo	undary compon	ient.	
Theorem (ABCGLW '20)			
	- comb ()			

For any $\mathbb{G} \in \mathfrak{T}_{I}^{\text{comb}}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_{+}}{L}$$

Here $[x]_+ \coloneqq \max(x, 0)$.

		Length, cut and glue 00000		A Mirzakhani identity 000000
A combinatorial Mirzakhani identity				

Consider the following auxiliary functions $\mathcal{D}, \mathcal{R} \colon \mathbb{R}^3_+ \to \mathbb{R}_+$:

$$\mathcal{D}(L, \ell, \ell') \coloneqq [L - \ell - \ell']_+$$

$$\mathcal{R}(L, L', \ell) \coloneqq \frac{1}{2} \left([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \right)$$

Theorem (ABCGLW '20)

For any $\mathbb{G}\in\mathbb{T}^{\text{comb}}_{\Sigma}(\vec{L}),$ we have

$$L_{1} = \sum_{l=2}^{n} \sum_{\gamma} \mathcal{R} \left(L_{1}, L_{l}, \boldsymbol{\ell_{G}(\gamma)} \right) + \frac{1}{2} \sum_{\gamma, \gamma'} \mathcal{D} \left(L_{1}, \boldsymbol{\ell_{G}(\gamma)}, \boldsymbol{\ell_{G}(\gamma')} \right)$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ, γ' bounding a pair of pants with $\partial_1 \Sigma$.

		Length, cut and glue 00000		A Mirzakhani identity
A combinatorial Mirzakhani identity				

Consider the following auxiliary functions $\mathcal{D}, \mathcal{R}: \mathbb{R}^3_+ \to \mathbb{R}_+$:

$$\mathcal{D}(L, \ell, \ell') \coloneqq [L - \ell - \ell']_+$$

$$\mathcal{R}(L, L', \ell) \coloneqq \frac{1}{2} \left([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \right)$$

Theorem (ABCGLW '20)

For any $\mathbb{G}\in \mathfrak{T}^{\text{comb}}_{\Sigma}(\vec{L}),$ we have

$$L_{1} = \sum_{i=2}^{n} \sum_{\boldsymbol{\gamma}} \mathcal{R}(L_{1}, L_{i}, \boldsymbol{\ell_{G}(\boldsymbol{\gamma})}) + \frac{1}{2} \sum_{\boldsymbol{\gamma}, \boldsymbol{\gamma}'} \mathcal{D}(L_{1}, \boldsymbol{\ell_{G}(\boldsymbol{\gamma})}, \boldsymbol{\ell_{G}(\boldsymbol{\gamma}')}).$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ , γ' bounding a pair of pants with $\partial_1 \Sigma$.

		Length, cut and glue 00000		A Mirzakhani identity 000000
A combinatorial Mirzakhani identity				

Consider the following auxiliary functions $\mathcal{D}, \mathcal{R} \colon \mathbb{R}^3_+ \to \mathbb{R}_+$:

$$\mathcal{D}(L, \ell, \ell') \coloneqq [L - \ell - \ell']_+$$

$$\mathcal{R}(L, L', \ell) \coloneqq \frac{1}{2} \left([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \right)$$

Theorem (ABCGLW '20)

For any $\mathbb{G}\in \mathfrak{T}^{\text{comb}}_{\Sigma}(\vec{L}),$ we have

$$1 = \sum_{i=2}^{n} \sum_{\gamma} \frac{\mathcal{R}(L_1, L_i, \ell_{\mathsf{G}}(\gamma))}{L_1} + \frac{1}{2} \sum_{\gamma, \gamma'} \frac{\mathcal{D}(L_1, \ell_{\mathsf{G}}(\gamma), \ell_{\mathsf{G}}(\gamma'))}{L_1}$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ , γ' bounding a pair of pants with $\partial_1 \Sigma$.

The Kontsevich volumes are computed recursively by

$$V_{g,n}(L_1,...,L_n) = \sum_{i=2}^n \int_{\mathbb{R}_+} d\ell \, \ell \, \frac{\mathscr{R}(L_1,L_i,\ell)}{L_1} \, V_{g,n-1}(\ell,L_2,...,\widehat{L}_i,...,L_n) \\ + \frac{1}{2} \int_{\mathbb{R}_+^2} d\ell d\ell' \, \ell\ell' \, \frac{\mathscr{D}(L_1,\ell,\ell')}{L_1} \left(V_{g-1,n+1}(\ell,\ell',L_2,...,L_n) \right) \\ + \sum_{\substack{h+h'=g\\ J\sqcup J'=(L_2,...,L_n)}} V_{h,1+|J|}(\ell,J) \, V_{h',1+|J'|}(\ell',J') \right).$$

with initial conditions $V_{0,3}(L_1, L_2, L_3) = 1$ and $V_{1,1}(L) = \frac{L^2}{48}$.

The Kontsevich volumes are computed recursively by

$$V_{g,n}(L_{1},...,L_{n}) = \sum_{i=2}^{n} \int_{\mathbb{R}_{+}} d\ell \,\ell \,\frac{\mathcal{R}(L_{1},L_{i},\ell)}{L_{1}} \,V_{g,n-1}(\ell,L_{2},...,\hat{L}_{i},...,L_{n}) \\ + \frac{1}{2} \int_{\mathbb{R}_{+}^{2}} d\ell d\ell' \,\ell\ell' \,\frac{\mathcal{D}(L_{1},\ell,\ell')}{L_{1}} \left(V_{g-1,n+1}(\ell,\ell',L_{2},...,L_{n}) \right) \\ + \sum_{\substack{h+h'=g\\ J \sqcup J' = \{L_{2},...,L_{N}\}}} V_{h,1+|J|}(\ell,J) \,V_{h',1+|J'|}(\ell',J') \right).$$

with initial conditions $V_{0,3}(L_1, L_2, L_3) = 1$ and $V_{1,1}(L) = \frac{L^2}{48}$.

	Length, cut and glue 00000	A Mirzakhani identity

Integral structure

Definition

A metric ribbon graph G is called integral if the length of every edge is a positive integer.

$$\mathbb{ZM}_{g,n}^{\text{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} \text{integral MRGs} \\ \text{type } (g,n) \text{ and boundary } \vec{L} \end{array} \right\} \subset \mathcal{M}_{g,n}^{\text{comb}}(\vec{L}).$$

We can count integral points as

$$N_{g,n}(\vec{L}) := \sum_{G \in \mathbb{Z} \times t_{g,n}^{\text{comb}}(\vec{L})} \frac{1}{\operatorname{Aut}(G)}.$$

Idea. $N_{g,n}(\vec{L})$ is the volume of the combinatorial moduli space w.r.t the "counting measure", that is Dirac deltas at the integral points.

	Length, cut and glue 00000	A Mirzakhani identity 000●00

Integral structure

Definition

A metric ribbon graph G is called integral if the length of every edge is a positive integer.

$$\mathbb{ZM}_{g,n}^{\mathrm{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} \mathrm{integral} \ \mathrm{MRGs} \\ \mathrm{type} \ (g,n) \ \mathrm{and} \ \mathrm{boundary} \ \vec{L} \end{array} \right\} \subset \mathcal{M}_{g,n}^{\mathrm{comb}}(\vec{L}).$$

We can count integral points as

$$N_{g,n}(\vec{L}) := \sum_{G \in \mathbb{Z} \times \mathbb{M}_{g,n}^{\text{comb}}(\vec{L})} \frac{1}{\operatorname{Aut}(G)}.$$

Idea. $N_{g,n}(\vec{L})$ is the volume of the combinatorial moduli space w.r.t the "counting measure", that is Dirac deltas at the integral points.

	Length, cut and glue 00000	A Mirzakhani identity 000●00

Integral structure

Definition

A metric ribbon graph G is called integral if the length of every edge is a positive integer.

$$\mathbb{ZM}_{g,n}^{\mathrm{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} \mathrm{integral} \ \mathrm{MRGs} \\ \mathrm{type} \ (g,n) \ \mathrm{and} \ \mathrm{boundary} \ \vec{L} \end{array} \right\} \subset \mathcal{M}_{g,n}^{\mathrm{comb}}(\vec{L}).$$

We can count integral points as

$$N_{g,n}(\vec{L}) \coloneqq \sum_{G \in \mathbb{Z} \times \mathbb{M}_{g,n}^{\text{comb}}(\vec{L})} \frac{1}{\operatorname{Aut}(G)}.$$

Idea. $N_{g,n}(\vec{L})$ is the volume of the combinatorial moduli space w.r.t the "counting measure", that is Dirac deltas at the integral points.

The numbers of integral MRGs are computed recursively by

$$N_{g,n}(L_1, \dots, L_n) = \sum_{l=2}^n \sum_{\ell \ge 1} \ell \frac{\mathcal{R}(L_1, L_l, \ell)}{L_1} N_{g,n-1}(\ell, L_2, \dots, \widehat{L}_l, \dots, L_n) + \frac{1}{2} \sum_{\ell, \ell' \ge 1} \ell \ell' \frac{\mathcal{D}(L_1, \ell, \ell')}{L_1} \left(N_{g-1, n+1}(\ell, \ell', L_2, \dots, L_n) \right) + \sum_{\substack{h+h'=g\\J \sqcup J' = \{L_2, \dots, L_n\}}} N_{h, 1+|J|}(\ell, J) N_{h', 1+|J'|}(\ell', J') \right).$$

The numbers of integral MRGs are computed recursively by

$$\begin{split} N_{g,n}(L_1,\ldots,L_n) &= \sum_{i=2}^n \sum_{\ell \geqslant 1} \ell \frac{\mathscr{R}(L_1,L_i,\ell)}{L_1} N_{g,n-1}(\ell,L_2,\ldots,\widehat{L_i},\ldots,L_n) \\ &+ \frac{1}{2} \sum_{\ell,\ell' \geqslant 1} \ell \ell' \frac{\mathscr{D}(L_1,\ell,\ell')}{L_1} \left(N_{g-1,n+1}(\ell,\ell',L_2,\ldots,L_n) \right) \\ &+ \sum_{\substack{h+h'=g\\ J \sqcup J' = \{L_2,\ldots,L_n\}}} N_{h,1+|J|}(\ell,J) N_{h',1+|J'|}(\ell',J') \right). \end{split}$$
 with $N_{0,3}(L_1,L_2,L_3) = \frac{1+(-1)^{L_1+L_2+L_3}}{2}$ and $N_{1,1}(L) = \frac{1+(-1)^{L}}{2} \frac{L^2-4}{48}.$

	Length, cut and glue 00000	A Mirzakhani identity 00000●

Multicurve count

Define $\mathcal{N}_{\Sigma} \colon \mathcal{T}_{\Sigma}^{comb} \times \mathbb{R}_+ \to \mathbb{N}$ the counting function,

 $\mathcal{N}_{\Sigma}(\mathbb{G}; t) \coloneqq \# \left\{ \left. \gamma \; \right| \; \underset{\text{with } \ell_{\mathbb{G}}(\gamma) \; \leqslant \; t}{\text{with } \ell_{\mathbb{G}}(\gamma) \; \leqslant \; t} \; \right\}.$

Theorem (ABCGLW '20)

- The counting function $\mathcal{N}_{\Sigma}(\mathbb{G}; t)$ is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\left< \mathcal{N}_{g,n} \right> (\vec{L};t) := \int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \, \frac{\omega_{\mathrm{K}}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion.

• Taking the asymptotic as $t \to \infty$, we get the Masur–Veech volumes of the moduli space of quadratic differentials.

		Length, cut and glue 00000	A Mirzakhani identity 00000●
Multicurve c	ount		

Define $\mathcal{N}_{\Sigma} : \mathfrak{T}_{\Sigma}^{\text{comb}} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function.

 $\mathfrak{N}_{\Sigma}(\mathbb{G}; t) \coloneqq \# \left\{ \left. \gamma \right| \underset{\ell_{\mathbb{G}}(\gamma) \leqslant t}{\text{multicurve in } \Sigma} \right\}.$

Theorem (ABCGLW '20)

- The counting function N_Σ(G; t) is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\left< \mathcal{N}_{g,n} \right> (\vec{L};t) := \int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \; \frac{\omega_{\mathrm{K}}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion.

• Taking the asymptotic as $t \to \infty$, we get the Masur–Veech volumes of the moduli space of quadratic differentials.

		Length, cut and glue 00000	A Mirzakhani identity 00000●
Multicurve c	ount		

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{T}_{\Sigma}^{\text{comb}} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function.

 $\mathcal{N}_{\Sigma}(\mathbb{G}; t) \coloneqq \# \left\{ \left. \gamma \right. \left| \begin{array}{c} \underset{\text{with } \ell_{\mathbb{G}}(\gamma) \, \leqslant \, t}{\text{with } \ell_{\mathbb{G}}(\gamma) \, \leqslant \, t} \right. \right\}.$

Theorem (ABCGLW '20)

- The counting function N_Σ(G; t) is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\left< \mathcal{N}_{g,n} \right> (\vec{L};t) \coloneqq \int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \; \frac{\omega_{\mathsf{K}}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion.

• Taking the asymptotic as $t \to \infty$, we get the Masur-Veech volumes of the moduli space of quadratic differentials.

		Length, cut and glue 00000	A Mirzakhani identity 00000●
Multicurve c	ount		

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{T}_{\Sigma}^{\text{comb}} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function.

 $\mathcal{N}_{\Sigma}(\mathbb{G}; t) \coloneqq \# \left\{ \left. \gamma \right. \left| \begin{array}{c} \underset{\text{with } \ell_{\mathbb{G}}(\gamma) \, \leqslant \, t}{\text{with } \ell_{\mathbb{G}}(\gamma) \, \leqslant \, t} \right. \right\}.$

Theorem (ABCGLW '20)

- The counting function N_Σ(G; t) is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\left< \mathcal{N}_{g,n} \right> (\vec{L};t) \coloneqq \int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \, \frac{\omega_{\mathsf{K}}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion.

• Taking the asymptotic as $t \to \infty$, we get the Masur–Veech volumes of the moduli space of quadratic differentials.

To conclude we obtained:

- global length/twist coord's on $\mathcal{T}_{\Sigma}^{comb}(\vec{L})$
- a combinatorial Wolpert formula for $\omega_{\rm K}$
- a Mirzakhani identity, from which we gave a geometric proof of:
 - $\circ~$ Witten–Kontsevich recursion for symplectic volumes/ $\psi\text{-intersections}$
 - Norbury's recursion for lattice pnts
- a recursion for the multicurve counting and Masur-Veech volumes
- * a PL manifold structure on $\mathfrak{T}^{comb}_{\Sigma}(\vec{L})$
- * a flow $\sigma^t \colon \mathfrak{T}^{hyp}_{\Sigma}(\vec{L}) \to \mathfrak{T}^{hyp}_{\Sigma}(\vec{L})$ that limits to $\mathfrak{T}^{comb}_{\Sigma}(\vec{L})$

Possible generalisations (?):

- moduli space of super curves
- moduli space of real curves

To conclude we obtained:

- global length/twist coord's on $\mathcal{T}_{\Sigma}^{comb}(\vec{L})$
- a combinatorial Wolpert formula for $\omega_{\rm K}$
- a Mirzakhani identity, from which we gave a geometric proof of:
 - $\circ~$ Witten–Kontsevich recursion for symplectic volumes/ $\psi\text{-intersections}$
 - Norbury's recursion for lattice pnts
- a recursion for the multicurve counting and Masur–Veech volumes
- * a PL manifold structure on $\mathfrak{T}^{comb}_{\Sigma}(\vec{L})$
- $* \text{ a flow } \sigma^t \colon \mathfrak{T}^{\text{hyp}}_{\Sigma}(\vec{L}) \to \mathfrak{T}^{\text{hyp}}_{\Sigma}(\vec{L}) \text{ that limits to } \mathfrak{T}^{\text{comb}}_{\Sigma}(\vec{L})$

Possible generalisations (?):

- moduli space of super curves
- moduli space of real curves

Thank you!

- J.E. Andersen, G. Borot, S. Charbonnier, A. Giacchetto, D. Lewański, C. Wheeler. "On the Kontsevich geometry of the combinatorial Teichmüller space". (2020) arXiv: 2010.11806 [math.DG].
- 2. J.E. Andersen, G. Borot, N. Orantin. "Geometric recursion". (2017) arXiv:1711.04729 [math.GT].
- 3. M. Kontsevich "Intersection theory on the moduli space of curves and the matrix Airy function". *Commun. Math. Phys.* 147 (1992).
- 4. M. Mirzakhani "Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces". *Invent. Math.* 167.1 (2007).
- 5. P. Norbury "Counting lattice points in the moduli space of curves". *Math. Res. Lett.* 17 (2010).
- 6. E. Witten "Two-dimensional gravity and intersection theory on moduli space". Surv. Diff. Geom. 1.1 (1990).

Measured foliations ●00	

Embedded MRGs and measured foliations

Every embedded MRG $\mathbb{G}\in\mathbb{T}^{comb}_{\Sigma}$ defines an (isotopy class of) measured foliations on $\Sigma.$ Locally:

Measured foliations dual to embedded MRGs

- are always transverse to ∂Σ,
- do not contain saddle connections (i.e. singular leaves connecting singular points).

Measured foliations ⊙●○	

Measured foliations ⊙●⊙	

Measured foliations ⊙●⊙	

Measured foliations ⊙●⊙	

Measured foliations ○●○	

Measured foliations 00●	

Non-admissible gluing

Measured foliations 00●	

Non-admissible gluing

Measured foliations 00●	

Non-admissible gluing

Geometric kernels

Lemma

For a fixed pair of pants P, identify $\mathbb{R}^3_+ \cong \mathcal{T}^{\text{comb}}_P$.

• The function

$$\mathcal{D}(L, \ell, \ell') := [L - \ell - \ell']_+$$

associates to a point $(L, \ell, \ell') \in \mathcal{T}_{\rho}^{comb}$ the fraction of $\partial_1 P$ that is not common with $\partial_2 P \cup \partial_3 P$ (once retracted to the graph).

The function

$$\mathscr{R}(L,L',\ell) \coloneqq \frac{1}{2} \left([L-L'-\ell]_+ - [-L+L-\ell]_+ + [L+L'-\ell]_+ \right)$$

associates to $(L, L', \ell) \in \mathcal{T}_{p}^{comb}$ the fraction of the $\partial_1 P$ that is not common with $\partial_3 P$ (once retracted to the graph).

• Symplectic volumes $V_{g,n}(\vec{L})$:

$$C = C$$
 $x(z) = \frac{z^2}{2}$ $y(z) = z$ $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

• Lattice point count $N_{g,n}(\vec{L})$:

$$C = C$$
 $x(z) = z + \frac{1}{z}$ $y(z) = z$ $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

• Average number of multicurves $\langle N_{g,n} \rangle$ (\vec{L} ; t) of length $\leq t$:

$$\mathcal{C} = \mathbb{C} \qquad x(z) = \frac{z^2}{2} \qquad y(z) = z$$
$$B(z_1, z_2) = \left(\frac{1}{(z_1 - z_2)^2} + \frac{(s\pi)^2}{\sin^2(s\pi(z_1 - z_2))}\right) \frac{dz_1 dz_2}{2}$$