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Natural definition (?)

Imagine your Geometry teacher introducing Grassmannians as follows.

Definition

The Grassmannian Gr2(C4) is defined as the set of points

[x0 : x1 : x2 : x3 : x4 : x5] ∈ P5

satisfying the relation
x0x1 − x2x3 + x4x5 = 0.

One can give a similar definition of KP tau functions.

Definition

A tau function of the KP hierarchy is a (formal) function

τ ∈ C[t1, t2, . . . ]

satisfying an infinite system of PDEs: for u = 2∂2
t1

log (τ),

3∂2
t2

u + ∂t1

(
−4∂t3 u+6u∂t1 u + ∂3

t1
u
)
= 0

· · ·
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Sato Grassmannian

Denote Z ′ = Z+ 1
2 . Consider the vector spaces over C

V = span
{

es
∣∣ s ∈ Z ′

}
V+ = span

{
es
∣∣ s ∈ Z ′>0

}
and define the (big cell of the) Sato Grassmannian

Gr0(V) = { W ⊆ V | πW : W → V+ is an iso } .

Define the Fock space as the space of semi-infinite wedges on V that stabilises
on the right:

F = span
{

es1 ∧ es2 ∧ · · ·
∣∣∣ ∃c∈Z s.t. for k�0

sk+
1
2 −k=c

}/
∼ .

The value c is called the charge. Denote by F0 the charge-zero subspace. It
contains the vacuum vector

|0〉 = e1/2 ∧ e3/2 ∧ e5/2 ∧ · · · .
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Semi-infinite wedge and partitions

More generally, for any partition λ, we have and element of F0:

|λ〉 = e1/2−λ1
∧ e3/2−λ2

∧ e5/2−λ3
∧ · · ·

· ·
·

− +

λ1 λ2
λ3 λ4

λ5

|(5 4 2 1 1)〉 = e−9/2 ∧ e−5/2 ∧ e1/2 ∧ e5/2 ∧ e7/2 ∧ e11/2 ∧ · · ·
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Plücker relations

Definition

Define the Plücker embedding Gr0(V)→ PF0

W 7−→ π−1
W (e1/2)∧π

−1
W (e3/2)∧ · · ·

Define the operators
ψs = es∧, ψ

†
s = ιe∗−s

called the creation (for s < 0) and annihilation (s > 0) operators.

Theorem

An element |ω〉 ∈ PF0 represents a point of Gr0(V) iff it satisfies the fermionic
Plücker relations ∑

s∈Z′
ψs |ω〉 ⊗ψ†s |ω〉 = 0.
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Boson-fermion correspondence

Define the operators

Hn =
∑

s∈Z′
:ψ−sψ

†
s+n: n ∈ Z.

The boson-fermion correspondence is the isomorphism T : F0 → C[t1, t2, . . . ]
defined as

T(|ω〉) =
〈

0
∣∣∣eH(t)

∣∣∣ω〉 , H(t) =
∑
n>0

tnHn.

Example

Since Hn |0〉 = 0 for n > 0, we have eH(t) |0〉 = |0〉. Thus,

T(|0〉) = 〈0|0〉 = 1.

Another example is |ω〉 = (e1/2 + e−5/2)∧ e3/2 ∧ e5/2 ∧ · · · . The associated
function is

T(|ω〉) =

〈
0

∣∣∣∣∣
(

1 +
t3
1
6

H3
1 +

t1t2

2
(H1H2 + H2H1) + t3H3

)∣∣∣∣∣ω
〉

= 1 +
t3
1
6

+
t1t2

2
+ t3.
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Plücker relations in the bosonic formalism

Theorem

An element τ ∈ C[t1, t2, . . . ] represents a point of Gr0(V) iff it satisfies the
bosonic Plücker relations∮

exp

(
2
∑
k>0

zk uk

)
exp

(
−2
∑
k>0

z−k

k
∂uk

)
τ(t+u)τ(t−u)dz = 0,

order by order in Taylor expansions in u.

Every coefficient of monomials in the uk ’s is then a PDE satisfied by τ(t): the KP
hierarchy.

Example

The element |ω〉 = (e1/2 + e−5/2)∧ e3/2 ∧ e5/2 ∧ · · · belongs to Gr0(V). Thus,
the associated function

τ(t) = 1 +
t3
1
6

+
t1t2

2
+ t3

satisfies the KP hierarchy.
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ĜL(∞)-action

Define the Lie algebra

ĝl(∞) =

C +
∑

r ,s∈Z′
Xrs :ψ−rψ

†
s :

∣∣∣∣∣∣ C ∈ C, Xrs = 0 for |r − s|� 0

 .

The associated Lie group ĜL(∞) =
{

eg1 · · ·egk

∣∣∣ gi ∈ ĝl(∞)
}

acts transitively

on Gr0(V). Thus,

Gr0(V) =
{

eg1 · · ·egk |0〉
∣∣∣ gi ∈ ĝl(∞)

}
.

Corollary

An element τ ∈ C[t1, t2, . . . ] is a KP tau function iff it can be expressed as

τ(t) =
〈

0
∣∣∣eH(t)eg1 · · ·egk

∣∣∣ 0〉
for some gi ∈ ĝl(∞).



Semi-infinite wedge formalism Hurwitz theory Hurwitz numbers and integrable hierarchies

The main example

Natural element of ĝl(∞) are given by the diagonal elements

Fm =
∑

s∈Z′
sm :ψ−sψ

†
s : .

We can then construct the (1-parameter families of) tau functions

τm(β; t) =
〈

0
∣∣∣eH(t)eβ

Fm
m eH−1

∣∣∣ 0〉 ,

which has deep connections with the representation theory of the symmetric
group and (spoiler alert) Hurwitz theory.

Lemma

The following relations hold:

(H−1)
d |0〉 =

∑
λ`d

dim(λ) |λ〉 Fm |λ〉 = pm(λ) |λ〉 Hµ1 · · ·Hµn |λ〉 = χλ(µ) |0〉 ,

where χλ(µ) are the irreducible characters of the symmetric group, and

pm(λ) =

∞∑
i=1

[(
λi − i + 1

2

)m
−
(
−i + 1

2

)m
]

.
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The main example

Proposition

The tau function τm can be expressed as

τm(β; t) =
∑

n,b>0

1
n!

∞∑
µ1 ,...,µn=0

am(b;µ)
βb

b!

n∏
i=1

tµi ,

where

am(b;µ) =
∑
λ`|µ|

χλ(µ)

(
pm(λ)

m

)b dim(λ)

|µ|!
.

Proof. From the lemma,

eH−1 |0〉 =
∑
d>0

∑
λ`d

dim(λ)

d!
|λ〉 .

Applying eβ
Fm
m , we get

eβ
Fm
m eH−1 |0〉 =

∑
b>0

∑
d>0

∑
λ`d

(
pm(λ)

m

)b dim(λ)

d!
|λ〉

 βb

b!
.

Applying eH(t), we get the thesis.
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Hurwitz covers

Hurwitz theory is the theory of computing the number of ramified coverings of
the Riemann sphere with specified ramifications.

Definition

Fix d > 0 and µ1, . . . ,µk ` d. A Hurwitz cover of type (µ1, . . . ,µk) is a d-fold
covering map f : C→ P1, where
• C is a connected, compact Riemann surface,
• f has k branch points x1, . . . , xk of ramification profile µ1, . . . ,µk .

For a given Hurwitz cover f : C→ P1, the genus of C is determined by the
Riemann–Hurwitz formula:

2 − 2g = 2d −

k∑
i=1

(
d − `(µi)

)
.
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Hurwitz numbers

Definition

Fix d > 0 and µ1, . . . ,µk ` d. Define the Hurwitz numbers

H(µ1, . . . ,µk) =
∑
[f ]

1
|Aut(f)|

,

where the sum runs over all isomorphism classes of Hurwitz covers f : C→ P1 of
type (µ1, . . . ,µk). Denote by H•(µ1, . . . ,µk) the same count, but allowing the
covering surface to be disconnected.

For instance, one has
H
(
(2), (2)

)
= 1

2 ,

corresponding to the cover P1 → P1, z 7→ z2 which has an automorphism group
of order 2.
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Monodromy representation

Consider a degree d Hurwitz cover f : C→ P1 of type (µ1, . . . ,µk) ramified over
B = { x1, . . . , xk } ⊂ P1. Fix a point p 6∈ B and label its preimages by p1, . . . , pd .
We define the monodromy representation:

ρ : π1(P
1 \ B, p) −→ Sd = S{p1 ,...,pd }

γ 7−→ σγ =
[
pm 7→ γ̃m(1)

]
,

where γ̃m is the unique lift of γ starting at pm.

Notice that
• a different choice of labeling corresponds to composing ρ with an inner

automorphism of Sd ,
• if γi is a loop winding once around xi , the cycle type of σγi is µi ,

• if σγ1 · · ·σγk = id,

• C is connected iff 〈σγ1 · · ·σγk 〉 acts transitively.

Viceversa, a monodromy representation contains enough information to
reconstruct the Hurwitz cover (up to automorphism).
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Hurwitz numbers for group theorists

Proposition

Fix µ1, . . . ,µk ` d. The corresponding disconnected Hurwitz numbers are given
by the following permutation count in Sd

H•(µ1, . . . ,µk) =
1
d!

∣∣∣∣∣
{

(σ1, . . . ,σk)

∣∣∣∣∣
σ1 ,...,σk∈Sd

σi has cycle type µi

σ1···σk=id

}∣∣∣∣∣ .
The connected count can be obtained by imposing the transitivity condition.

We can recast the computation of Hurwitz numbers as a multiplication problem
in the symmetric group algebra.
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Hurwitz numbers for representation theorists

Consider the symmetric group algebra CSd . For a partition µ ` d, define the
elements

Cµ =
∑
σ∈Sd

σ of cycle type µ

σ.

Hurwitz numbers are the coefficient of the identity in the appropriate product
of elements of the symmetric group algebra.

Corollary

Fix µ1, . . . ,µk ` d. The corresponding disconnected Hurwitz numbers are given
by the following multiplication count in CSd :

H•(µ1, . . . ,µk) =
1
d!

[id]Cµ1 · · ·Cµk .
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H•
(
(3), (3)

)

For a group theorist,

H•
(
(3), (3)

)
=

1
3!

∣∣∣∣∣
{ (

(1 2 3),(1 3 2)
)(

(1 3 2),(1 2 3)
)}∣∣∣∣∣ = 1

3
.

For a representation theorist, in CS3 we have

C(3) = (1 2 3) + (1 3 2),

so that
C(3) ·C(3) = 2 id+(1 2 3) + (1 3 2).

Thus, we find

H•
(
(3), (3)

)
=

1
3!
[id]C(3) ·C(3) =

1
3

.
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Centre of the symmetric group algebra

The elements Cµ for µ ` d are central elements in CSd . More precisely, they
form a basis:

Z(CSd) =
⊕
µ`d

C.Cµ

Theorem (Maschke)

Z(CSd) is a semisimple algebra: there exists a basis eλ such that

eλ · eλ′ = δλ,λ′eλ.

Moreover, the change of bases essentially given by the character table:

eλ =
dim(λ)

d!

∑
µ`d

χλ(µ)Cµ Cµ = |Cµ|
∑
λ`d

χλ(µ)

dim(λ)
eλ.
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Burnside character formula

We have

eλ =
dim(λ)

d!

∑
µ`d

χλ(µ)Cµ Cµ = |Cµ|
∑
λ`d

χλ(µ)

dim(λ)
eλ.

Thus, we find

Cµ1 · · ·Cµk =
∑
λ`d

(
k∏

i=1

|Cµi |
χλ(µ

i)

dim(λ)

)
eλ.

On the other hand, eλ =
dim(λ)

d! χλ((1d)) id+ · · · = dim(λ)2

d! id+ · · · . As a
consequence, we obtain the following result.

Theorem (Burnside character formula)

Fix µ1, . . . ,µk ` d. The corresponding Hurwitz numbers are given by

H•(µ1, . . . ,µk) =
∑
λ`d

(
dim(λ)

d!

)2
(

k∏
i=1

|Cµi |
χλ(µ

i)

dim(λ)

)
.
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Simple Hurwitz numbers

Define the simple Hurwitz numbers as Hurwitz numbers with a single ramification
point of arbitrary ramification profile, and simple ramification otherwise:

hg,µ = |Aut(µ)|H
(
µ, (2, 1d−1), · · · , (2, 1d−1)︸ ︷︷ ︸

b times

)
b = 2g − 2 + `(µ) + d.

The Burnside character formula specialises to

h•g,µ =
1∏

i>1 µi

∑
λ`d

χλ(µ)

(
|C(2,1d−1)|

χλ((2, 1d−1))

dim(λ)

)b
dim(λ)

d!
.
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Simple Hurwitz numbers and KP

Lemma

The following identity holds:

|C(2,1d−1)|
χλ((2, 1d−1))

dim(λ)
=

1
2

∞∑
i=1

[(
λi − i + 1

2

)2
−
(
−i + 1

2

)2
]
=

p2(λ)

2
.

As a consequence, we find the following formula for disconnected simple
Hurwitz numbers:

h•g,µ =
1∏

i>1 µi

∑
λ`d

χλ(µ)

(
p2(λ)

2

)b dim(λ)

d!
.

Theorem (Okounkov)

The generating series of disconnected simple Hurwitz numbers is a tau function
of the KP hierarchy:

∑
g,n>0

1
n!

∞∑
µ1 ,...,µn=0

h•g,µ
βb

b!

n∏
i=1

µi tµi =

〈
0
∣∣∣∣eH(t)eβ

F2
2 eH−1

∣∣∣∣ 0〉 .
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Generalisations

• Burnside’s character formula can be generalised to counting of covers
with a base of genus γ.

H•γ(µ
1, . . . ,µk) =

∑
λ`d

(
dim(λ)

d!

)2−2γ
(

k∏
i=1

|Cµi |
χλ(µ

i)

dim(λ)

)
.

• Through semi-infinite wedge, one can consider tau functions of the 2D
Toda hierarchy, which depend on two infinite sets of times t = (t1, t2 . . . )
and t ′ = (t ′1, t ′2 . . . ). Okounkov proved that the generating series of
disconnected double Hurwitz numbers

hg,µ,ν = |Aut(µ)| |Aut(ν)|H
(
µ,ν, (2, 1d−1), · · · , (2, 1d−1)︸ ︷︷ ︸

b times

)
is a tau function of the 2D Toda hierarchy.
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Generalisations

• One can give a Hurwitz number interpretation to the tau function〈
0
∣∣∣eH(t)eβ

Fr
r eH−1

∣∣∣ 0〉
in terms of Hurwitz number with r-completed cycles
(Okounkov–Pandharipande).

• One can change H−1 to H−q
q for any q > 1. The corresponding tau

function can be expressed in terms of q-orbifold Hurwitz number with
r-completed cycles.

• One can impose more conditions on the count (monotonicity and strict
monotonicity conditions). The associated partition functions are still tau
functions of the KP or 2D Toda hierarchies (Harnad–Orlov).

• One can construct a Fock space from uncharged fermion. Through
boson-fermion correspondence, one can obtain tau functions of the BKP
hierarchy. They are connected to spin Hurwitz numbers.
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More properties & applications

• Hurwitz numbers satisfy many more interesting properties
• evolution equation (cut-and-join equation),
• topological recursion and connection with matrix models,
• expression in terms of intersection theory on the moduli space of curves Mg,n

(ELSV formula).

• The ELSV formula, together with the KP result, can be used to prove Witten’s
conjecture: the partition function

Z(t) =
∑

2g−2+n>0

1
n!

∞∑
µ1 ,...,µn=0

(∫
Mg,n

ψ
d1
1 · · ·ψ

dn
n

)
n∏

i=1

tµi

is a tau function of the KdV hierarchy (Kazarian–Lando).

• The ELSV formula, together with the KP result, can be used to prove other
results concerning other invariants: Gromov–Witten of P1, Masur–Veech
volumes, the Euler characteristic of Mg,n, . . .



Thank you!
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