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New strategy: Gauss-Bonnet theorem



The Gauss—-Bonnet theorem

Theorem (Generalised Gauss-Bonnet theorem)

Let @be a compact complex m-orbifold, M ¢ M open such that
D =M\ Mis a “nice” divisor. Then

(M) —J Com(Tor(— log D).

M

Tyi(—log D) is the log tangent bundle.



The Gauss—-Bonnet theorem

Theorem (Generalised Gauss—-Bonnet theorem)
Let @be a compact complex m-orbifold, M ¢ M open such that
D =M\ Mis a “nice” divisor. Then

X(M) :J

Cm(Tm(— log D)).
]

Tyi(—log D) is the log tangent bundle.

In our case, o
M = Mg,m M = MQJ’

and Ty;(—log D) is such that its fiber over (C, p;

H(C, w2 (p1+---+pn) .



Hodge integrals

The Chern classes of these types of bundles were computed by
Chiodo (generalising Mumford’s formula):
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Proposition
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Upshot: we expressed xg,» in terms of Hodge integrals, which are
well-studied integrals in algebraic geometry and mathematical
physics.



How to prove the HZ formula

Step 1. We proved that

Xg.n+1 = _(29 —2+4+n) Xg.n

using string and dilaton equation.
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Step 2. Prove the base cases:

xO,3:L -1

Mo3
1
xu==|_ M) =—g
11 0, 1 1 17
v N vT 1
Xg0 = Z T A H Z bt =
>0 = YMge =1 =1

The last equality is due to Dubrovin-Yang-Zagier.

29(2g—2)



Topological recursion

Intfegrals of classes like the previous ones were linked to topological
recursion by Lewanski-Popolitov-Shadrin-Zvonkine.
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Corollary
Consider the spectral curve

dZ] dZQ

1
X@) =log2)—2, vy =7, Ba.zn)=— s

Then

n

xan = ([TRes (1-2) ) woul@, ... 20
=1



Thank you!
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