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MPI Mathematics

Alessandro Giacchetto

MPIM Bonn

August 16th, 2021



The Harer–Zagier formula

Consider the moduli space of curves

Mg,n =
{
(C,p1, . . . ,pn)

∣∣∣ C cmplx cmpct smooth curve
genus g with n marked pnts

}/
∼

which is a smooth complex orbifold of dimension 3g − 3 + n.

Theorem (Harer–Zagier, ’86)

The Euler characteristic of the moduli space of curves χg,n = χ(Mg,n) is
given by

χg,n = (−1)n(2g − 3 + n)!
B2g

2g(2g − 2)!

New strategy: Gauss–Bonnet theorem
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The Gauss–Bonnet theorem

Theorem (Generalised Gauss–Bonnet theorem)

Let M be a compact complex m-orbifold, M ⊂ M open such that
D = M \ M is a “nice” divisor. Then

χ(M) =

∫
M

cm
(
TM(− logD)

)
.

TM(− logD) is the log tangent bundle.

In our case,
M = Mg,n, M = Mg,n

and TM(− logD) is such that its fiber over (C,p1, . . . ,pn) is

H0(C,ω⊗2
C (p1 + · · ·+ pn)

)∨
.
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Hodge integrals

The Chern classes of these types of bundles were computed by
Chiodo (generalising Mumford’s formula):

c
(
TM(− logD)

)
= Λ∨ exp

(
−
∑
m>1

1
m
κm

)
.

Proposition

χg,n =
∑
`>0

(−1)`

`!

∫
Mg,n+`

Λ∨
∏̀
i=1

∑
µi>1

ψ
µi+1
n+i

Upshot: we expressed χg,n in terms of Hodge integrals, which are
well-studied integrals in algebraic geometry and mathematical
physics.
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How to prove the HZ formula

Step 1. We proved that

χg,n+1 = −(2g − 2 + n)χg,n

using string and dilaton equation.

Step 2. Prove the base cases:

g = 0 : χ0,3 =

∫
M0,3

1 = 1

g = 1 : χ1,1 = −

∫
M1,1

(λ1 + κ1) = −
1

12

g > 2 : χg,0 =
∑
`>0

(−1)`

`!

∫
Mg,`

Λ∨
∏̀
i=1

∑
µi>1

ψ
µi+1
i =

B2g

2g(2g − 2)

The last equality is due to Dubrovin–Yang–Zagier.
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Topological recursion

Integrals of classes like the previous ones were linked to topological
recursion by Lewański–Popolitov–Shadrin–Zvonkine.

Corollary

Consider the spectral curve

x(z) = log(z) − z, y(z) =
1
z
, B(z1, z2) =

dz1dz2

(z1 − z2)2 .

Then

χg,n =

( n∏
i=1

Res
zi=1

(1 − zi)

)
ωg,n(z1, . . . , zn).
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Thank you!
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