Noncommutative geometry meets topological recursion WWU Münster

The Harer–Zagier formula via intersection theory

joint work in progress with D. Lewański, P. Norbury

Alessandro Giacchetto

MPIM Bonn

August 16th, 2021

The Harer–Zagier formula

Consider the moduli space of curves

$$\mathcal{M}_{g,n} = \left\{ \left(C, p_1, \dots, p_n \right) \middle| \begin{array}{c} C \text{ cmplx cmpct smooth curve} \\ \text{genus } g \text{ with } n \text{ marked pnts} \end{array} \right\} \middle/ \sim$$

which is a smooth complex orbifold of dimension 3g - 3 + n.

Theorem (Harer–Zagier, '86)

The Euler characteristic of the moduli space of curves $\chi_{g,n} = \chi(\mathcal{M}_{g,n})$ is given by

$$\chi_{g,n} = (-1)^n (2g - 3 + n)! \frac{B_{2g}}{2g(2g - 2)!}$$

New strategy: Gauss-Bonnet theorem

The Harer–Zagier formula

Consider the moduli space of curves

$$\mathcal{M}_{g,n} = \left\{ \left(C, p_1, \dots, p_n \right) \middle| \begin{array}{c} C \text{ cmplx cmpct smooth curve} \\ \text{genus } g \text{ with } n \text{ marked pnts} \end{array} \right\} \middle/ \sim$$

which is a smooth complex orbifold of dimension 3g - 3 + n.

Theorem (Harer-Zagier, '86)

The Euler characteristic of the moduli space of curves $\chi_{g,n} = \chi(\mathcal{M}_{g,n})$ is given by

$$\chi_{g,n} = (-1)^n (2g - 3 + n)! \frac{B_{2g}}{2g(2g - 2)!}$$

New strategy: Gauss–Bonnet theorem

The Harer–Zagier formula

Consider the moduli space of curves

$$\mathcal{M}_{g,n} = \left\{ \left(C, p_1, \dots, p_n \right) \middle| \begin{array}{c} C \text{ cmplx cmpct smooth curve} \\ \text{genus } g \text{ with } n \text{ marked pnts} \end{array} \right\} \middle/ \sim$$

which is a smooth complex orbifold of dimension 3g - 3 + n.

Theorem (Harer-Zagier, '86)

The Euler characteristic of the moduli space of curves $\chi_{g,n} = \chi(\mathcal{M}_{g,n})$ is given by

$$\chi_{g,n} = (-1)^n (2g - 3 + n)! \frac{B_{2g}}{2g(2g - 2)!}$$

New strategy: Gauss-Bonnet theorem

The Gauss-Bonnet theorem

Theorem (Generalised Gauss-Bonnet theorem)

Let \overline{M} be a compact complex *m*-orbifold, $M \subset \overline{M}$ open such that $D = \overline{M} \setminus M$ is a "nice" divisor. Then

$$\chi(M) = \int_{\overline{M}} C_m \big(T_{\overline{M}}(-\log D) \big).$$

 $T_{\overline{M}}(-\log D)$ is the log tangent bundle.

In our case,

$$\overline{M} = \overline{\mathcal{M}}_{g,n}, \qquad M = \mathcal{M}_{g,n}$$

and $T_{\overline{M}}(-\log D)$ is such that its fiber over (C, p_1, \dots, p_n) is

 $H^0(C, \omega_C^{\otimes 2}(p_1 + \cdots + p_n))^{\vee}.$

The Gauss-Bonnet theorem

Theorem (Generalised Gauss-Bonnet theorem)

Let \overline{M} be a compact complex *m*-orbifold, $M \subset \overline{M}$ open such that $D = \overline{M} \setminus M$ is a "nice" divisor. Then

$$\chi(M) = \int_{\overline{M}} C_m \big(T_{\overline{M}}(-\log D) \big).$$

 $T_{\overline{M}}(-\log D)$ is the log tangent bundle.

In our case,

$$\overline{M} = \overline{\mathcal{M}}_{g,n}, \qquad M = \mathcal{M}_{g,n}$$

and $T_{\overline{M}}(-\log D)$ is such that its fiber over (C, p_1, \ldots, p_n) is

$$H^0(C, \omega_C^{\otimes 2}(p_1 + \cdots + p_n))^{\vee}.$$

Hodge integrals

The Chern classes of these types of bundles were computed by Chiodo (generalising Mumford's formula):

$$C(T_{\overline{M}}(-\log D)) = \Lambda^{\vee} \exp\left(-\sum_{m \ge 1} \frac{1}{m} \kappa_m\right).$$

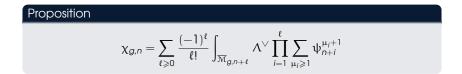
Proposition $\chi_{g,n} = \sum_{\ell \ge 0} \frac{(-1)^{\ell}}{\ell!} \int_{\overline{\mathcal{M}}_{g,n+\ell}} \Lambda^{\vee} \prod_{i=1}^{\ell} \sum_{\mu_i \ge 1} \psi_{n+i}^{\mu_i+1}$

Upshot: we expressed $\chi_{g,n}$ in terms of Hodge integrals, which are well-studied integrals in algebraic geometry and mathematical physics.

Hodge integrals

The Chern classes of these types of bundles were computed by Chiodo (generalising Mumford's formula):

$$c(T_{\overline{M}}(-\log D)) = \Lambda^{\vee} \exp\left(-\sum_{m \ge 1} \frac{1}{m} \kappa_m\right).$$



Upshot: we expressed $\chi_{g,n}$ in terms of Hodge integrals, which are well-studied integrals in algebraic geometry and mathematical physics.

Hodge integrals

The Chern classes of these types of bundles were computed by Chiodo (generalising Mumford's formula):

$$C(T_{\overline{M}}(-\log D)) = \Lambda^{\vee} \exp\left(-\sum_{m \ge 1} \frac{1}{m} \kappa_m\right).$$

Proposition $\chi_{g,n} = \sum_{\ell \ge 0} \frac{(-1)^{\ell}}{\ell!} \int_{\overline{\mathcal{M}}_{g,n+\ell}} \Lambda^{\vee} \prod_{i=1}^{\ell} \sum_{\mu_i \ge 1} \psi_{n+i}^{\mu_i+1}$

Upshot: we expressed $\chi_{g,n}$ in terms of Hodge integrals, which are well-studied integrals in algebraic geometry and mathematical physics.

How to prove the HZ formula

Step 1. We proved that

$$\chi_{g,n+1} = -(2g-2+n)\chi_{g,n}$$

using string and dilaton equation.

Step 2. Prove the base cases:

$$g = 0: \qquad \chi_{0,3} = \int_{\overline{\mathcal{M}}_{0,3}} 1 = 1$$

$$g = 1: \qquad \chi_{1,1} = -\int_{\overline{\mathcal{M}}_{1,1}} (\lambda_1 + \kappa_1) = -\frac{1}{12}$$

$$g \ge 2: \qquad \chi_{g,0} = \sum_{\ell \ge 0} \frac{(-1)^{\ell}}{\ell!} \int_{\overline{\mathcal{M}}_{g,\ell}} \Lambda^{\vee} \prod_{i=1}^{\ell} \sum_{\mu_i \ge 1} \psi_i^{\mu_i + 1} = \frac{B_{2g}}{2g(2g - 2)}$$

The last equality is due to Dubrovin-Yang-Zagier.

How to prove the HZ formula

Step 1. We proved that

$$\chi_{g,n+1} = -(2g-2+n)\chi_{g,n}$$

using string and dilaton equation.

Step 2. Prove the base cases:

$$g = 0: \qquad \chi_{0,3} = \int_{\overline{\mathcal{M}}_{0,3}} 1 = 1$$

$$g = 1: \qquad \chi_{1,1} = -\int_{\overline{\mathcal{M}}_{1,1}} (\lambda_1 + \kappa_1) = -\frac{1}{12}$$

$$g \ge 2: \qquad \chi_{g,0} = \sum_{\ell \ge 0} \frac{(-1)^\ell}{\ell!} \int_{\overline{\mathcal{M}}_{g,\ell}} \Lambda^{\vee} \prod_{i=1}^\ell \sum_{\mu_i \ge 1} \psi_i^{\mu_i + 1} = \frac{B_{2g}}{2g(2g - 2)}$$

The last equality is due to Dubrovin-Yang-Zagier.

Integrals of classes like the previous ones were linked to topological recursion by Lewański–Popolitov–Shadrin–Zvonkine.

Corollary

Consider the spectral curve

$$x(z) = \log(z) - z,$$
 $y(z) = \frac{1}{z},$ $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}.$

Then

$$\chi_{g,n} = \left(\prod_{i=1}^n \operatorname{Res}_{z_i=1} (1-z_i)\right) \omega_{g,n}(z_1,\ldots,z_n).$$

Integrals of classes like the previous ones were linked to topological recursion by Lewański–Popolitov–Shadrin–Zvonkine.

Corollary

Consider the spectral curve

$$x(z) = \log(z) - z,$$
 $y(z) = \frac{1}{z},$ $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}.$

Then

$$\chi_{g,n} = \left(\prod_{i=1}^n \operatorname{Res}_{z_i=1} (1-z_i)\right) \omega_{g,n}(z_1,\ldots,z_n).$$

Thank you!

- 1. A. Giacchetto, D. Lewański, P. Norbury. In preparation
- 2. J. Harer, D. Zagier. "The Euler characteristic of the moduli space of curves". Invent. Math. 85 (1986)
- 3. B. Dubrovin, D. Yang, D. Zagier. "Classical Hurwitz numbers and related combinatorics". *Mosc. Math. J.* 17.4 (2017)
- 4. D. Lewański, A. Popolitov, S. Shadrin, D. Zvonkine. "Chiodo formulas for the *r*-th roots and topological recursion". *Lett. Math. Phys.* 107.5 (2017)