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Moduli space of curves

For g, n > Osuch that 2g — 2 + n > 0, consider the moduli space of
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which is a smooth complex orbifold of dimension 3g — 3 + n. It admits a
compactification Mg p.
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Moduli space of curves

For g, n > Osuch that 2g — 2 + n > 0, consider the moduli space of
curves

Mg = { (C.pr, ..., ©On)

which is a smooth complex orbifold of dimension 3g — 3 + n. It admits a
compactification Mg p.

C cmplx cmpct curve
genus g with n marked pnts

Fundamental problem

Understand H* (Mg,n). H* (M) and its intersection theory:
® generators and relations,
¢ differential forms representing cohomology classes,
e efficient computation of intersection numbers,
* enumerative-geometric interactions (e.g. ELSV)
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Different geometric models

There exists various modular inferpretation of Mg . Alternative modular
definitions lead to different geometric structures.

* Moduli space Mgf’,;”b(f) of metric ribbon graphs equipped with the
Kontsevich symplectic form wy.

¢ Moduli space MSY,‘E,’(Z) of hyperbolic surfaces equipped with the
Weil-Petersson symplectic form wwe.

* Moduli space M (&) of flat surfaces equipped with the Veech
volume form.
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The combinatorial model

The combinatorial moduli space

G metric ribbon graph
genus g with nbndrs isometry
of length [

MO (1) = { G

has a natural symplectic form wy.

Theorem (Jenkins-Strebel ‘60s, Kontsevich ‘92, Zvonkine '02)

e Forevery [ € R7, there is an orbifold isomorphism Mg?nmb(f) = Mgn.
* The symplectic volumes are finite and given by

J'M?nmb(u eXP(wK Jﬁgn &P <Z 7 >

® The symplectic volumes are computed recursively on 2g —2 + n
(Witten’s conjecture).
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Proves comparison

Kontsevich’s proof of the recursion is based on matrix model

techniques.
Feynman Sum over Some P-classes
oo / ribbon graphs intersections
Aliry
matrix model

\_/> recursion

We propose a new proof, based on the geometric structure of
Mg?nmb(L) and parallel to Mirzakhani’s proof in the hyperbolic setting.

wg compatible with
/ cutting/gluing

Combinatorial volume . P-classes
model recursion intersections

\\) 1 from
cutting/gluing
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Ribbon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each
vertex.

G| Gl

We have well-defined
e genusg >0,
® number of boundary componentsn > 1.

We call (g, n) the type of the ribbon graph. Boundaries are assumed
to be labeled.
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Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph G with an assignment
L: Ec — R,. The space of such metrics is IRiG.

G ® el
57 V2 57 V2

0(6)=57+m

00,6) =+ V2 00,G') =2(57 + m+V?2)

0(335) =57 +V2
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Example: type (0, 3)

Recall that for a fixed ribbon graph G, the space of metrics on it is Rie.

MEgme — , il =R
@O

® . o



The combinatorial model
[e]o]e] e]e]

The combinatorial moduli space

Define the combinatorial moduli space

Ec
Mcomb — R+
an l J '
ut(G
G ribbon graph ( )
of type (g,n)

where we glue orbicells through degeneration of edges.



The combinatorial model
[e]o]e] e]e]

The combinatorial moduli space

Define the combinatorial moduli space

Ec
Mcomb — R+
an l J '
ut(G
G ribbon graph ( )
of type (g,n)

where we glue orbicells through degeneration of edges.

We have a map p: Mg?,;“b — R1, assigning to each metric ribbon

graph the length of the labeled faces. We set Mg?nmb(Z) =p~ (D).



The combinatorial model
[e]o]e] e]e]

The combinatorial moduli space

Define the combinatorial moduli space

Ec
R

Aut(G)’

comb .__
Mgn™ =
G ribbon graph
of type (g,n)

where we glue orbicells through degeneration of edges.

We have a map p: Mg?,;“b — R1, assigning to each metric ribbon

graph the length of the labeled faces. We set M;?ﬁ‘b(Z) =p~ (D).

Proposition (Jenkins ‘57, Strebel ‘67, Zvonkine ‘02)

Mg?nmb(f) is a real topological orbifold of dimension 6g — 6 + 2n, and
there exists a homeomorphism of fopological orbifolds

-

MEP(D) = Mg
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The combinatorial Teichmuller space

Again we have a map p: 7™ — R?, assigning to each metric ribbon
graph the length of the labeled faces. We set 7¢°M°([) := p~ ().
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The combinatorial Teichmuller space

Again we have a map p: g™ — R?, assigning to each metric ribbon
graph the length of the labeled faces. We set 7¢°M°([) := p~ ().

Proposition

o Tgomb(f) is a real topological manifold of dimension 6g — 6 + 2n.
¢ The mapping class group Mods := Homeo™ (£, 9Z)/ Homeog(X) is
acting on 7¢°M°([), and

TS ([)/ Mods = M (L).
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Length of simple closed curve

Fix a simple closed curve y in £, and G € T7¢°™°. Define the length of v
with respect to G:

°* homotope y to the embedded graph,
¢ sum up the lengths of the edges vy travels through.

lgly) =c+d+2e+f.
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Cutting

Fix v is a simple closed curve in £ and G € Jgome,

Lemma

It is possible to cut G along v and obtain a new embedded MRG on
the cut surface.

1 ==
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Fix G € 7™, G’ € TP, and 9;%, 9,X’ boundary components such
that {g(9;2) = €/ (0;X"). Fix an identification 9;Z ~ 9,L’.

Lemma

Fora.e. T € R, it is possible to glue G and G’ along 9;~ ~ ;L with twist
T, and obtain an embedded MRG on the glued surface.




Length, cut and glue
[e]e]e] e}

Combinatorial Fenchel-Nielsen coordinates

Fix a pants decomposition @ = (vy, ..., Y3g—3+n) Of Z. We have a map

FN: T80 (L) — (R x R)%9-3+7
6 — (talvi), w(y));% """

called the combinatorial Fenchel-Nielsen coordinates.
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Combinatorial Fenchel-Nielsen coordinates

Fix a pants decomposition @ = (vy, ..., Y3g—3+n) Of Z. We have a map

FN: T80 (L) — (R x R)%9-3+7
G — (ts(vi) te(y) % "

called the combinatorial Fenchel-Nielsen coordinates.

< >

‘ =(a+b,—a)

6 . FN(G) = (ts(v), Ta(v))

Question

Does ({s(vi), t6(vi)) determine G?
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Combinatorial Fenchel-Nielsen coordinates

Theorem (Andersen, Borot, Charbonnier, AG, Lewanski, Wheeler)

For every choice of #, the map
FN: T8°™°([) — (R, x R)39-5+"

is @ homeomorphism onto ifs image, with an open dense image.
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The Kontsevich form

Define the Kontsevich 2-form wy on each cell of Tgomb(Z) by

N2 dfe[a] dee‘“’]
wk=) SV W= > A
i i i

lo] _ o]
I I

[ 42

where g;', g, ... are the edges around the ith face of the ribbon
graph underlying the cell, and < is the order on the edges induced by

the orientation of the surface.
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The Kontsevich form

Define the Kontsevich 2-form wy on each cell of Tgomb(Z) by

N2 dfe[a] dee‘“’]
wk=) SV W= > A
i i i

ef[lJ] <ei[b]

where e,.[”, e,m, ... are the edges around the ith face of the riblbbon

graph underlying the cell, and < is the order on the edges induced by
the orientation of the surface.

Wy = %(daAdb+ daAdc+ dbAdc)

L ' S Wi = da A db+ da A dc + db A de

el _ g el2l —p o3l — ¢
old]l _ g ol8) _ p ol6] _ ¢
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The symplectic volumes

Theorem (Kontsevich ‘92, Zvonkine ‘02)

e The form wg on ‘Igomb(f) is symplectic and MCG invariant
* The symplectic volume Vg (L) of M (L) is finite and given by

N2
exp(wK) = J; exp (Z 5’1]);).
n i=1

J MEIP (L) Mg,
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The symplectic volumes

Theorem (Kontsevich ‘92, Zvonkine ‘02)

e The form wg on ‘Igomb(f) is symplectic and MCG invariant
* The symplectic volume Vg (L) of M (L) is finite and given by

N2
exp(wK) = J; exp (Z 5’1]);).
n i=1

J MEIP (L) Mg,

Upshot: the computation of all (tq, - - ~Tdn>g is equivalent to the
computation of the symplectic volume Vg »(L).
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A combinatorial Wolpert formula

Theorem (ABCGLW ‘20)

For every choice of pants decomposition on £, we have a global
coordinates (¢, 1), **" on T (L), Then

i=

3g—3+n
Wk = Z de,'/\d’f,'.

i=1
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A combinatorial Wolpert formula

Theorem (ABCGLW ‘20)

For every choice of pants decomposition on £, we have a global
coordinates (¢, 1), **" on T (L), Then

i=

3g—3+n
Wk = Z de,'/\d’f,'.

i=1

wg =daANdb+ db /A dc+ daAdc

. dt Adt=d(a+b)Ad(—a)=daAdb
L < >

‘ (d(za+2b+2c):o = wK:de/\de

Upshot: wy is compatible with cutting/gluing of embedded MRGs.
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Let T be a torus with one boundary component.

Theorem (ABCGLW ‘20)

For any G € J$¢°™P(L), we have

[L—2t()],
] == Z f.

Y
simple closed curve

Here [x], := max(x, 0).

Vi (L) :j wy
MEI (1)
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Let T be a torus with one boundary component.

Theorem (ABCGLW ‘20)

For any G € J$¢°™P(L), we have

[L—2t()],
] == Z f.

Y
simple closed curve

Here [x], := max(x, 0).

via(t) = | 1w
MG (L)
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Let T be a torus with one boundary component.

Theorem (ABCGLW ‘20)

For any G € J$¢°™P(L), we have

[L—2t(v)],
-y lmel

Y
simple closed curve

Here [x], := max(x, 0).

L
1 (2 L—2¢ 2
V. = . = — - =

11 (L) JM??mb(L] I Wk 2 J‘O L 48

= J'* Py = 5.
12 M4 24
Via(l) = fjf Uy
My
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Here, the first sum is over simple closed curves y bounding a pair of
pants with 9, X and 9;Z, and the second sum is over all pairs of simple
closed curves v, vy’ bounding a pair of pants with 9; Z.
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A combinatorial Mirzakhani identity

Consider the following auxiliary functions D, R: R® — R,
DL ) =[L—0—0],
RIL L Q) = g(u— Uty — L L0, +[L4L —e]+)

Theorem (ABCGLW ‘20)

For any G € T ([), we have

1 :iz R(Ly, L, () 4] Z Q(LLEG(Y),QG(Y')).

Ly

Here, the first sum is over simple closed curves y bounding a pair of
pants with 9, X and 9;Z, and the second sum is over all pairs of simple
closed curves v, vy’ bounding a pair of pants with 9, Z.
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A Mirzakhani identity
@000

Witten-Kontsevich recursion

[ combinatorial combinatorial ]

Wolpert formulo] Y [Mirzokhoni identity

[recursion for Vg,n(Z)]

The Kontsevich volumes are computed recursively by
n
R(Ly, L, ~
Vgn(L, ..., Ly) = ZJ d@@% Vg 18 Ly Ly L)
=2 R+ !

+%J dede’ ger 2480
R2 Ly

(ng,nw (€,¢ L, ..., Ln)
2

Y Ve @D Vi (e',J’)).
h+h’=g
Jud ={ly,...Ln}

2

with initial conditions Vg s(Ly, Ly, L3) = 1 and V(L) = 5—8.
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Integral structure

Definition
A metric ribbon graph G is called integral if the length of every edge is
a positive integer.

comb (1 .__ infegral MRGs comb (7"
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Integral structure

Definition
A metric ribbon graph G is called integral if the length of every edge is
a positive integer.

comb (1 .__ infegral MRGs comb (7"
ZMQ,” (L) = { type (g, n) and boundoryf} C Mgvn (L).

We can count integral points as

- 1
Ngn(D):= > ARG

GezMEMe (D)

-

Idea. Ngn(L) is the volume of the combinatorial moduli space w.r.t the
“counting measure”, that is Dirac deltas at the integral points.
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Norbury recursion fromn Mirzakhani

[in’regrol structure combinatorial ]

ZA I ] Y [Mirzokhoni identity

[recursion for Ny (L) ]

The numbers of intfegral MRGs are computed recursively by

R(Ly, L, ¢) ~
Ngn(Ly, ..., Z > G ] Ngn1(€ Lo, ..., L,..., Ln)
=21
D(Ly, 0,0
+3 > w? ‘ ](Ng,],m(z,z',Lz ,,,,, Ln)
2,0/ >1

+ ) Na s (G Ny (Z’,J’)).
h+h’*9
Jud' ={Ly,...Ln}

with Nos(Ly, Lo, Lg) = SHEDT2T0 g Ny (1) = HECDE L4
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Define Ns: €™ x R, — N the counting
function,

Ne(6i1) = #{ v | THleg 25

Theorem (ABCGLW ‘20)

® The counting function Nx (G; 1) is computed by a Mirzakhani-type
recursion (geometric recursion).
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Multicurve count

Define Ns: €™ x R, — N the counting
function,

Ne(6i1) = #{ v | THleg 25

Theorem (ABCGLW ‘20)

® The counting function Nx (G; 1) is computed by a Mirzakhani-type
recursion (geometric recursion).

e |t is MCG invariant, and its mean value

3g—3+n
Wk

<Ng,n> (L) = m

J . Ng,n(G; f)
e (D

is computed by topological recursion.
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Multicurve count

Define Ns: €™ x R, — N the counting
function,

Ne(6i1) = #{ v | THleg 25

Theorem (ABCGLW ‘20)

® The counting function Nx (G; 1) is computed by a Mirzakhani-type
recursion (geometric recursion).

e |t is MCG invariant, and its mean value

3g—3+n
Wk

(Ngn) (L 1) = Non(G:H) 3o 37

ngé,gﬂb(m
is computed by topological recursion.

* Taking the asymptotic as t — oo, we get the Masur-Veech volumes
of the moduli space of quadratic differentials.



To conclude we obtained:

-

e global length/twist coord’s on T¢oMP(L)

e g combinatorial Wolpert formula for wyg

* a Mirzakhani identity, from which we gave a geometric proof of:

o Witten-Kontsevich recursion for symplectic volumes/1p-intersections
o Norbury’s recursion for latftice pnts

® arecursion for the multicurve counting and Masur-Veech volumes
* a PL manifold structure on 7¢°™° (L)

« aflow of: TP (L) — TP (L) that limits o TP ()
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Measured foliations
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Embedded MRGs and measured foliations

Every embedded MRG G € T¢°™° defines an (isotopy class of)
measured foliations on Z. Locally:

s tie

Measured foliations dual to embedded MRGs
e are always transverse to 0%,

¢ do not contain saddle connections (i.e. singular leaves
connecting singular points).
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Example of cutting/gluing

CJ+ b
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Non-admissible gluing

Za
SN Z
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Kernels
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Geometric kernels

Lemma

For a fixed pair of pants P, identify R = oMb,

® The function
DL e ) =[L—e—¢0'],

associates to a point (L, ¢,¢') € ‘Igomb the fraction of 9P that is not
common with 9,P U 93P (once retracted to the graph).

® The function
R(L L' Q) = %([L—L'—m— [—L+L—0l, +[L+ L’—Eh)

associates to (L, L', ¢) € Tgomb the fraction of the 9P that is not common
with 93P (once retracted to the graph).

05P 03P a2 3P

0P %P




EO topological recursion
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Spectral curves

e Symplectic volumes Vg n(L):

2

B B 7z B . dZ] d22
c=C x@2=% y@=z Bz.2)= [y
* Lattice point count Ny (L)

e=C ]

X(2) :Z+E v(z)=2z

2
B(Z],ZQ) = ( ] + (ST[)

(21 —2)?2  sin? (STr(Z1 — 22))

adz 1 d22
2
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