Seminar "Moduli spaces of complex curves" @ WWU

The combinatorial geometry of the moduli space of curves

j/w J.E. Andersen, G. Borot, S. Charbonnier, D. Lewański, C. Wheeler arXiv:2010.11806 [math.DG]

Alessandro Giacchetto Univeristé Paris-Saclay, IPhT January 14th, 2022

> For $g, n \ge 0$ such that 2g - 2 + n > 0, consider the moduli space of curves

$$\mathcal{M}_{g,n} \coloneqq \left\{ \left. \left(C, p_1, \ldots, p_n
ight) \, \right| \, egin{array}{c} C ext{ cmplx cmpct curve} \\ ext{genus } g ext{ with } n ext{ marked pnts} \end{array}
ight\} \, \middle/ \sim$$

which is a smooth complex orbifold of dimension 3g - 3 + n. It admits a compactification $\overline{\mathcal{M}}_{a,n}$.

- generators and relations,

For $g, n \ge 0$ such that 2g - 2 + n > 0, consider the moduli space of curves

$$\mathcal{M}_{g,n} \coloneqq \left\{ \; (C, p_1, \dots, p_n) \; \middle| \; \substack{C \; \text{cmplx cmpct curve} \\ \text{genus } g \; \text{with } n \; \text{marked pnts}} \; \right\} \middle/ \sim$$

which is a smooth complex orbifold of dimension 3g-3+n. It admits a compactification $\overline{\mathbb{M}}_{g,n}$.

Fundamental problem

Understand $H^{\bullet}(\mathcal{M}_{g,n})$, $H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ and its intersection theory:

- generators and relations,
- differential forms representing cohomology classes,
- efficient computation of intersection numbers,
- enumerative-geometric interactions (e.g. ELSV)
- . . .

0000

There exists various modular interpretation of $\mathfrak{M}_{a,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathcal{M}_{q,p}^{\text{comb}}(\vec{L})$ of metric ribbon graphs equipped with the
- Moduli space $\mathcal{M}_{q,p}^{\text{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the
- Moduli space $\mathcal{M}_{\alpha,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech
-

Different geometric models

There exists various modular interpretation of $\mathfrak{M}_{g,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathfrak{M}^{\mathsf{comb}}_{g,n}(\vec{l})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_K .
- Moduli space $\mathfrak{M}_{g,n}^{\mathsf{hyp}}(\vec{l})$ of hyperbolic surfaces equipped with the Weil–Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{g,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech volume form.
- . . .

0000

There exists various modular interpretation of $\mathcal{M}_{a,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathfrak{M}_{a,p}^{\text{comb}}(\vec{L})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_{κ} .
- Moduli space $\mathcal{M}_{a,n}^{\mathsf{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the Weil-Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{\alpha,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech
-

Different geometric models

There exists various modular interpretation of $\mathfrak{M}_{g,n}$. Alternative modular definitions lead to different geometric structures.

- Moduli space $\mathfrak{M}^{\mathsf{comb}}_{g,n}(\vec{l})$ of metric ribbon graphs equipped with the Kontsevich symplectic form ω_K .
- Moduli space $\mathcal{M}_{g,n}^{\text{hyp}}(\vec{L})$ of hyperbolic surfaces equipped with the Weil–Petersson symplectic form ω_{WP} .
- Moduli space $\mathcal{M}_{g,n}^{\text{flat}}(\vec{\alpha})$ of flat surfaces equipped with the Veech volume form.
- ...

0000

The combinatorial moduli space

$$\mathfrak{M}^{\mathsf{comb}}_{g,n}(\vec{L}) \coloneqq \left\{ \left. G \right| \begin{array}{l} \textit{G metric ribbon graph} \\ \textit{genus } \textit{g with } \textit{n bndrs} \\ \textit{of length } \vec{L} \end{array} \right\} \middle/ \textit{isometry}$$

has a natural symplectic form ω_{κ} .

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathcal{M}_{a,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{a,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{comb}(\vec{L})} \exp \left(\omega_{K} \right) = \int_{\overline{\mathcal{M}}_{g,n}} \exp \left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i} \right).$$

• The symplectic volumes are computed recursively on 2g-2+n

0000

The combinatorial moduli space

$$\mathfrak{M}_{g,n}^{\mathsf{comb}}(\vec{L}) \coloneqq \left\{ \left. G \right| \begin{array}{l} \textit{G metric ribbon graph} \\ \textit{genus } \textit{g with } \textit{n bndrs} \\ \textit{of length } \vec{L} \end{array} \right\} \middle/ \textit{isometry}$$

has a natural symplectic form ω_{κ} .

Theorem (Jenkins-Strebel '60s, Kontsevich '92, Zvonkine '02)

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathfrak{M}_{a,n}^{\text{comb}}(\vec{L}) \cong \mathfrak{M}_{a,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{comb}(\vec{L})} \exp \bigl(\omega_K\bigr) = \int_{\overline{\mathcal{M}}_{g,n}} \exp \biggl(\sum_{i=1}^n \frac{L_i^2}{2} \psi_i \biggr)$$

• The symplectic volumes are computed recursively on 2g - 2 + n

0000

The combinatorial moduli space

$$\mathfrak{M}^{\mathsf{comb}}_{g,n}(\vec{L}) \coloneqq \left\{ \left. \mathsf{G} \right| \begin{array}{l} {}^{G} \text{ metric ribbon graph} \\ {}^{genus} \, g \, \text{with } n \, \text{bndrs} \\ {}^{of} \, \text{length} \, \vec{L} \end{array} \right\} \bigg/ \text{isometry}$$

has a natural symplectic form ω_{κ} .

Theorem (Jenkins-Strebel '60s, Kontsevich '92, Zvonkine '02)

- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathfrak{M}_{a,n}^{\text{comb}}(\vec{L}) \cong \mathfrak{M}_{a,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp \left(\omega_{\mathsf{K}} \right) = \int_{\overline{\mathcal{M}}_{g,n}} \exp \left(\sum_{i=1}^n \frac{L_i^2}{2} \psi_i \right).$$

• The symplectic volumes are computed recursively on 2g - 2 + n

0000

The combinatorial moduli space

$$\mathfrak{M}^{\mathsf{comb}}_{g,n}(\vec{L}) \coloneqq \left\{ \left. G \right| \begin{array}{l} \textit{G metric ribbon graph} \\ \textit{genus } \textit{g with } \textit{n bndrs} \\ \textit{of length } \vec{L} \end{array} \right\} \middle/ \textit{isometry}$$

has a natural symplectic form ω_{K} .

Theorem (Jenkins-Strebel '60s, Kontsevich '92, Zvonkine '02)

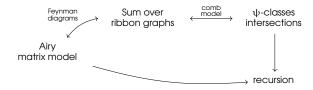
- For every $\vec{L} \in \mathbb{R}^n_+$, there is an orbifold isomorphism $\mathfrak{M}^{\mathsf{comb}}_{g,n}(\vec{L}) \cong \mathfrak{M}_{g,n}$.
- The symplectic volumes are finite and given by

$$\int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \exp \left(\omega_{\mathsf{K}} \right) = \int_{\overline{\mathcal{M}}_{g,n}} \exp \left(\sum_{i=1}^n \frac{L_i^2}{2} \psi_i \right).$$

• The symplectic volumes are computed recursively on 2g-2+n (Witten's conjecture).

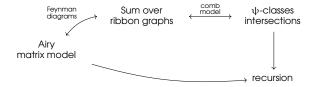
0000

Kontsevich's proof of the recursion is based on matrix model techniques.

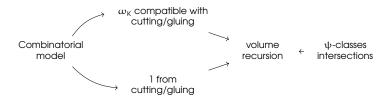


0000

Kontsevich's proof of the recursion is based on matrix model techniques.



We propose a new proof, based on the geometric structure of $\mathcal{M}_{q,p}^{\text{comb}}(L)$ and parallel to Mirzakhani's proof in the hyperbolic setting.



A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

We have well-defined

- aenus a > 0.
 - number of boundary components n ≥ 1

We call (g,n) the type of the ribbon graph. Boundaries are assumecto be labeled.

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

We have well-defined

- genus $g \geqslant 0$,
- number of boundary components $n \ge 1$.

We call (g, n) the type of the ribbon graph. Boundaries are assumed to be labeled

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.

We have well-defined

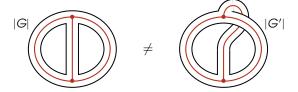
- genus $g \geqslant 0$,
- number of boundary components $n \ge 1$.

We call (g, n) the type of the ribbon graph. Boundaries are assumed to be labeled.

Ribbon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each vertex.



We have well-defined

- genus g ≥ 0,
- number of boundary components $n \ge 1$.

We call (g, n) the type of the ribbon graph. Boundaries are assumed to be labeled.

A metric ribbon graph is a ribbon graph G with an assignment $\ell \colon E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}_+^{E_G}$.

Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph G with an assignment $\ell \colon E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}_+^{E_G}$.

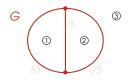
$$\ell(\partial_1 G) = 57 + \pi$$

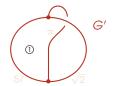
$$\ell(\partial_2 G) = \pi + \sqrt{2}$$

$$\ell(\partial_3 G) = 57 + \sqrt{2}$$

$$\ell(\partial_1 G') = 2(57 + \pi + \sqrt{2})$$

A metric ribbon graph is a ribbon graph G with an assignment $\ell \colon E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}_+^{E_G}$.





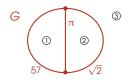
$$\ell(\partial_1 G) = 57 + \pi$$

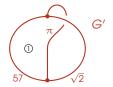
$$\ell(\partial_2 G) = \pi + \sqrt{2}$$

$$\ell(\partial_3 G) = 57 + \sqrt{2}$$

$$\ell(\partial_1 G') = 2(57 + \pi + \sqrt{2})$$

A metric ribbon graph is a ribbon graph G with an assignment $\ell \colon E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}_+^{E_G}$.





$$\ell(\partial_1 G) = 57 + \pi$$

$$\ell(\partial_2 G) = \pi + \sqrt{2}$$

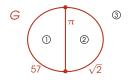
$$\ell(\partial_3 G) = 57 + \sqrt{2}$$

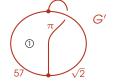
$$\ell(\partial_1 G') = 2(57 + \pi + \sqrt{2})$$

Metric ribbon graphs

Definition

A metric ribbon graph is a ribbon graph G with an assignment $\ell \colon E_G \to \mathbb{R}_+$. The space of such metrics is $\mathbb{R}_+^{E_G}$.





$$\ell(\partial_1 G) = 57 + \pi$$

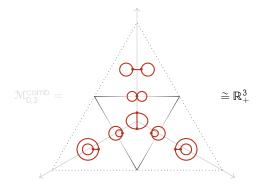
$$\ell(\partial_2 G) = \pi + \sqrt{2}$$

$$\ell(\partial_3 G) = 57 + \sqrt{2}$$

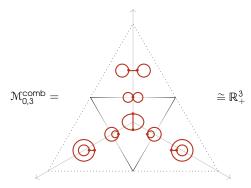
$$\ell(\partial_1 G') = 2(57 + \pi + \sqrt{2})$$

Recall that for a fixed ribbon graph G, the space of metrics on it is $\mathbb{R}_+^{\mathcal{E}_G}$.

Recall that for a fixed ribbon graph G, the space of metrics on it is $\mathbb{R}_+^{\mathcal{E}_G}$.



Recall that for a fixed ribbon graph G, the space of metrics on it is $\mathbb{R}_{+}^{\mathcal{E}_{G}}$.



Define the combinatorial moduli space

$$\mathcal{M}_{g,n}^{\mathsf{comb}} \coloneqq \bigcup_{\substack{G \text{ ribbon graph} \\ \text{of type } (g,n)}} \frac{\mathbb{R}_{+}^{\mathsf{L}_G}}{\mathsf{Aut}(G)}$$

where we glue orbicells through degeneration of edges.

$$\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}$$

The combinatorial moduli space

Define the combinatorial moduli space

$$\mathfrak{M}_{g,n}^{\mathsf{comb}} \coloneqq \bigcup_{\substack{G \text{ ribbon graph} \\ \text{of type } (g,n)}} \frac{\mathbb{R}_{+}^{\mathsf{L}_G}}{\mathsf{Aut}(G)}$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{a,n}^{\text{comb}} \to \mathbb{R}_+^n$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{an}^{comb}(\vec{L}) := p^{-1}(\vec{L})$.

$$\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}$$

The combinatorial moduli space

Define the combinatorial moduli space

$$\mathfrak{M}_{g,n}^{\mathsf{comb}} \coloneqq \bigcup_{\substack{G \text{ ribbon graph} \\ \text{ of type } (g,n)}} \frac{\mathbb{R}_+^{\mathsf{E}_G}}{\mathsf{Aut}(G)},$$

where we glue orbicells through degeneration of edges.

We have a map $p: \mathcal{M}_{g,n}^{\text{comb}} \to \mathbb{R}_+^n$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) := p^{-1}(\vec{L})$.

Proposition (Jenkins '57, Strebel '67, Zvonkine '02)

 $\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})$ is a real topological orbifold of dimension 6g-6+2n, and there exists a homeomorphism of topological orbifolds

$$\mathcal{M}_{g,n}^{\text{comb}}(\vec{L}) \cong \mathcal{M}_{g,n}.$$

The combinatorial Teichmüller space

Consider a topological compact surface Σ of genus $g \geqslant 0$, with $n \geqslant 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

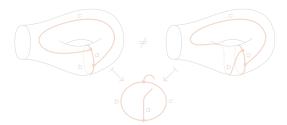
Define the combinatorial Teichmüller space

$$\mathfrak{I}_{\Sigma}^{comb} \coloneqq \left\{ G \hookrightarrow \Sigma \;\middle|\; \substack{G \text{ is a MRG embedded into } \Sigma\\ \text{s.t. } G \text{ is a deformation retract of } \Sigma} \right\} \middle/ \sim$$

where two embedded MRGs are identified if

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathcal{T}^{\text{comb}}_{\Sigma} \to \mathcal{M}^{\text{comb}}_{a,n}$, that forgets about the embedding.



Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \dots, \partial_n \Sigma$.

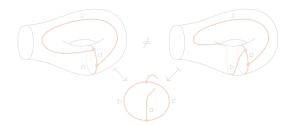
Define the combinatorial Teichmüller space

$$\mathfrak{T}_{\Sigma}^{comb} \coloneqq \left\{ G \hookrightarrow \Sigma \;\middle|\; \substack{G \text{ is a MRG embedded into } \Sigma\\ \text{s.t. } G \text{ is a deformation retract of } \Sigma} \right\} \middle/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi\colon \mathfrak{T}^{\mathsf{comb}}_{\Sigma} o \mathfrak{M}^{\mathsf{comb}}_{a,n}$, that forgets about the embedding



Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \dots, \partial_n \Sigma$.

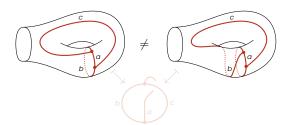
Define the combinatorial Teichmüller space

$$\mathcal{T}_{\Sigma}^{comb} \coloneqq \left\{ G \hookrightarrow \Sigma \;\middle|\; \substack{G \text{ is a MRG embedded into } \Sigma\\ \text{s.t. } G \text{ is a deformation retract of } \Sigma} \right\} \middle/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi\colon \mathfrak{T}^{\mathsf{comb}}_{\Sigma} o \mathfrak{M}^{\mathsf{comb}}_{a,n}$, that forgets about the embedding



Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \dots, \partial_n \Sigma$.

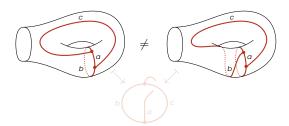
Define the combinatorial Teichmüller space

$$\mathfrak{T}_{\Sigma}^{comb} \coloneqq \left\{ G \hookrightarrow \Sigma \;\middle|\; \substack{G \text{ is a MRG embedded into } \Sigma\\ \text{s.t. } G \text{ is a deformation retract of } \Sigma} \right\} \middle/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi \colon \mathfrak{T}^{\mathsf{comb}}_{\Sigma} \to \mathfrak{M}^{\mathsf{comb}}_{g,n}$, that forgets about the embedding.



Consider a topological compact surface Σ of genus $g \ge 0$, with $n \ge 1$ labeled boundaries $\partial_1 \Sigma, \ldots, \partial_n \Sigma$.

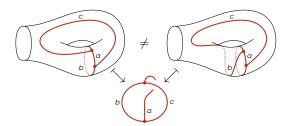
Define the combinatorial Teichmüller space

$$\mathfrak{T}_{\Sigma}^{comb} \coloneqq \left\{ G \hookrightarrow \Sigma \;\middle|\; \substack{G \text{ is a MRG embedded into } \Sigma\\ \text{s.t. } G \text{ is a deformation retract of } \Sigma} \right\} \middle/ \sim$$

where two embedded MRGs are identified iff

- they are isometric as MRGs,
- the embeddings are isotopic.

We have a map $\pi: \mathfrak{T}^{\mathsf{comb}}_{\Sigma} \to \mathfrak{M}^{\mathsf{comb}}_{a,n}$, that forgets about the embedding.



The combinatorial Teichmüller space

Again we have a map $p \colon \mathbb{T}^{\mathsf{comb}}_{\Sigma} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathfrak{T}_{r}^{comb}(\vec{L}) := p^{-1}(\vec{L})$.

- $\mathcal{T}_{\tau}^{\text{comb}}(\vec{L})$ is a real topological manifold of dimension 6g 6 + 2n.
- The mapping class group $\mathsf{Mod}_{\Sigma} := \mathsf{Homeo}^+(\Sigma, \partial \Sigma) / \mathsf{Homeo}_0(\Sigma)$ is

$$\mathfrak{I}_{\Sigma}^{comb}(\vec{L})/\operatorname{\mathsf{Mod}}_{\Sigma}\cong \mathfrak{M}_{g,n}^{comb}(\vec{L})$$

Again we have a map $p: \mathfrak{T}^{\mathsf{comb}}_{\Sigma} \to \mathbb{R}^n_+$, assigning to each metric ribbon graph the length of the labeled faces. We set $\mathfrak{T}^{\mathsf{comb}}_{\Sigma}(\vec{L}) \coloneqq p^{-1}(\vec{L})$.

Proposition

- $\mathfrak{T}_{\Sigma}^{comb}(\vec{L})$ is a real topological manifold of dimension 6g-6+2n.
- The mapping class group $\mathsf{Mod}_\Sigma \coloneqq \mathsf{Homeo}^+(\Sigma, \partial \Sigma) / \, \mathsf{Homeo}_0(\Sigma)$ is acting on $\mathfrak{T}_\Sigma^{\mathsf{comb}}(\vec{L})$, and

$$\mathfrak{I}_{\Sigma}^{comb}(\vec{L})/\operatorname{\mathsf{Mod}}_{\Sigma}\cong\mathfrak{M}_{a,n}^{comb}(\vec{L}).$$

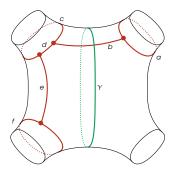
Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}$. Define the length of γ with respect to \mathbb{G} :

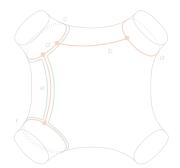
- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

Length of simple closed curve

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.



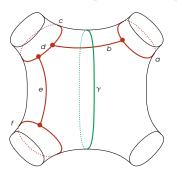


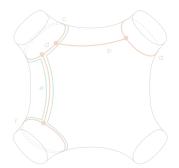
$$\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f$$

Length of simple closed curve

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}$. Define the length of γ with respect to \mathbb{G} :

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

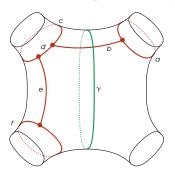


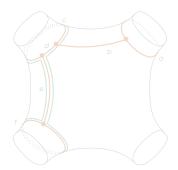


$$\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f$$

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathcal{T}_{\Sigma}^{\text{comb}}$. Define the length of γ with respect to G:

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.



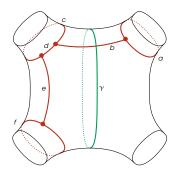


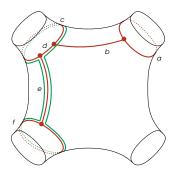
$$\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f$$

Length of simple closed curve

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathcal{T}_{\Sigma}^{comb}$. Define the length of γ with respect to G:

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

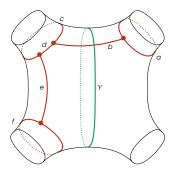


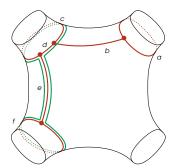


$$\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f$$

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathcal{T}_{\Sigma}^{\text{comb}}$. Define the length of γ with respect to G:

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

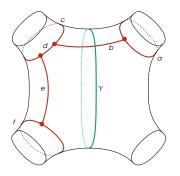


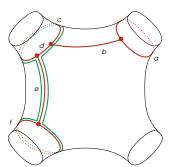


$$\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f$$

Fix a simple closed curve γ in Σ , and $\mathbb{G} \in \mathcal{T}_{\Sigma}^{\text{comb}}$. Define the length of γ with respect to G:

- homotope γ to the embedded graph,
- sum up the lengths of the edges γ travels through.

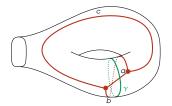




$$\ell_{\mathbb{G}}(\gamma) = c + d + 2e + f.$$

Fix γ is a simple closed curve in Σ and $\mathbb{G} \in \mathfrak{T}^{\mathsf{comb}}_{\Sigma}$.

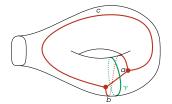
Fix γ is a simple closed curve in Σ and $\mathbb{G} \in \mathfrak{T}^{\mathsf{comb}}_{\Sigma}$.

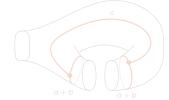


Fix γ is a simple closed curve in Σ and $\mathbb{G}\in \mathfrak{T}^{comb}_{r}.$

Lemma

It is possible to $\operatorname{cut} \mathbb{G}$ along γ and obtain a new embedded MRG on the cut surface.

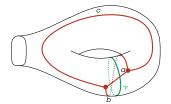


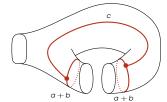


Fix γ is a simple closed curve in Σ and $\mathbb{G} \in \mathfrak{T}^{\mathsf{comb}}_{\Sigma}$.

Lemma

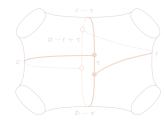
It is possible to cut \mathbb{G} along γ and obtain a new embedded MRG on the cut surface.





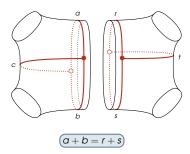
Fix $\mathbb{G} \in \mathfrak{T}^{comb}_{r}$, $\mathbb{G}' \in \mathfrak{T}^{comb}_{r'}$, and $\mathfrak{d}_{i}\Sigma$, $\mathfrak{d}_{i}\Sigma'$ boundary components such that $\ell_{\mathbb{G}}(\partial_i \Sigma) = \ell_{\mathbb{G}'}(\partial_i \Sigma')$. Fix an identification $\partial_i \Sigma \sim \partial_i \Sigma'$.

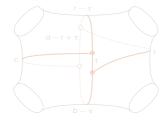




Gluing

Fix $\mathbb{G} \in \mathfrak{T}^{comb}_{r}$, $\mathbb{G}' \in \mathfrak{T}^{comb}_{r'}$, and $\mathfrak{d}_{i}\Sigma$, $\mathfrak{d}_{i}\Sigma'$ boundary components such that $\ell_{\mathbb{G}}(\partial_i \Sigma) = \ell_{\mathbb{G}'}(\partial_i \Sigma')$. Fix an identification $\partial_i \Sigma \sim \partial_i \Sigma'$.

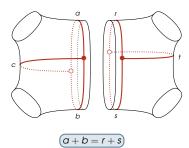


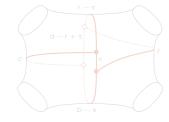


Fix $\mathbb{G} \in \mathfrak{T}^{comb}_{\mathfrak{T}}$, $\mathbb{G}' \in \mathfrak{T}^{comb}_{\mathfrak{T}'}$, and $\mathfrak{d}_{i}\Sigma$, $\mathfrak{d}_{i}\Sigma'$ boundary components such that $\ell_{\mathbb{G}}(\partial_i \Sigma) = \ell_{\mathbb{G}'}(\partial_i \Sigma')$. Fix an identification $\partial_i \Sigma \sim \partial_i \Sigma'$.

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue \mathbb{G} and \mathbb{G}' along $\partial_i \Sigma \sim \partial_i \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

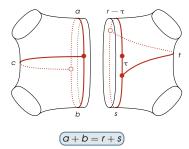


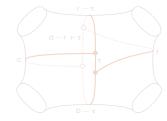


Fix $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}$, $\mathbb{G}' \in \mathfrak{T}^{comb}_{\Sigma'}$, and $\partial_i \Sigma$, $\partial_i \Sigma'$ boundary components such that $\ell_{\mathbb{G}}(\partial_i \Sigma) = \ell_{\mathbb{G}'}(\partial_i \Sigma')$. Fix an identification $\partial_i \Sigma \sim \partial_i \Sigma'$.

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue \mathbb{G} and \mathbb{G}' along $\partial_i \Sigma \sim \partial_i \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

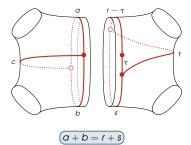


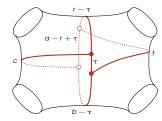


Fix $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}$, $\mathbb{G}' \in \mathfrak{T}^{comb}_{\Sigma'}$, and $\partial_i \Sigma$, $\partial_i \Sigma'$ boundary components such that $\ell_{\mathbb{G}}(\partial_i \Sigma) = \ell_{\mathbb{G}'}(\partial_i \Sigma')$. Fix an identification $\partial_i \Sigma \sim \partial_i \Sigma'$.

Lemma

For a.e. $\tau \in \mathbb{R}$, it is possible to glue \mathbb{G} and \mathbb{G}' along $\partial_i \Sigma \sim \partial_i \Sigma'$ with twist τ , and obtain an embedded MRG on the glued surface.

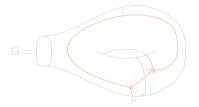




Fix a pants decomposition $\mathcal{P} = (\gamma_1, \dots, \gamma_{3a-3+n})$ of Σ . We have a map

$$\begin{aligned} \text{FN: } \mathfrak{T}^{\text{comb}}_{\Sigma}(\vec{L}) &\longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n} \\ & \mathbb{G} &\longmapsto \left(\ell_{\mathbb{G}}(\gamma_{i}), \tau_{\mathbb{G}}(\gamma_{i})\right)_{i=1}^{3g-3+n} \end{aligned}$$

called the combinatorial Fenchel-Nielsen coordinates.



$$FN(G) = (\ell_G(\gamma), \tau_G(\gamma))$$
$$= (\alpha + b, -a)$$

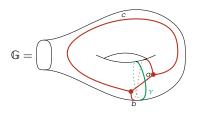
Combinatorial Fenchel-Nielsen coordinates

Fix a pants decomposition $\mathcal{P}=(\gamma_1,\ldots,\gamma_{3g-3+n})$ of Σ . We have a map

FN:
$$\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n}$$

$$\mathbb{G} \longmapsto \left(\ell_{\mathbb{G}}(\gamma_{i}), \tau_{\mathbb{G}}(\gamma_{i})\right)_{i=1}^{3g-3+n}$$

called the combinatorial Fenchel-Nielsen coordinates.



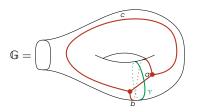
$$\begin{split} FN(\mathbb{G}) &= \left(\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma)\right) \\ &= \left(\alpha + b, -a\right) \end{split}$$

Fix a pants decomposition $\mathcal{P} = (\gamma_1, \dots, \gamma_{3g-3+n})$ of Σ . We have a map

FN:
$$\mathcal{T}_{\Sigma}^{\text{comb}}(\vec{L}) \longrightarrow (\mathbb{R}_{+} \times \mathbb{R})^{3g-3+n}$$

$$\mathbb{G} \longmapsto \left(\ell_{\mathbb{G}}(\gamma_{i}), \tau_{\mathbb{G}}(\gamma_{i})\right)_{i=1}^{3g-3+n}$$

called the combinatorial Fenchel-Nielsen coordinates.



$$\begin{split} FN(\mathbb{G}) &= \left(\ell_{\mathbb{G}}(\gamma), \tau_{\mathbb{G}}(\gamma)\right) \\ &= \left(\alpha + b, -a\right) \end{split}$$

Question

Does $(\ell_{\mathbb{G}}(\gamma_i), \tau_{\mathbb{G}}(\gamma_i))$ determine \mathbb{G} ?

Theorem (Andersen, Borot, Charbonnier, AG, Lewański, Wheeler)

For every choice of \mathcal{P} , the map

$$\mathsf{FN} \colon \mathfrak{T}^{\mathsf{comb}}_{\Sigma}(\vec{L}) \longrightarrow (\mathbb{R}_+ \times \mathbb{R})^{3g-3+n}$$

is a homeomorphism onto its image, with an open dense image.

The Kontsevich form

Define the Kontsevich 2-form ω_K on each cell of $\mathfrak{T}^{comb}_{\Sigma}(\vec{L})$ by

$$\omega_{\mathsf{K}} \coloneqq \sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \Psi_{i}, \qquad \Psi_{i} \coloneqq \sum_{\mathbf{e}_{i}^{[\sigma]} \prec \mathbf{e}_{i}^{[b]}} \frac{d\ell_{\mathbf{e}_{i}^{[\sigma]}}}{L_{i}} \wedge \frac{d\ell_{\mathbf{e}_{i}^{[b]}}}{L_{i}},$$

where $e_i^{[1]}$, $e_i^{[2]}$,... are the edges around the *i*th face of the ribbon graph underlying the cell, and \prec is the order on the edges induced by the orientation of the surface.

$$\Psi_1 = \frac{2}{L^2} (da \wedge db + da \wedge dc + db \wedge dc$$

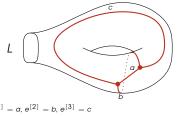
$$\omega_K = da \wedge db + da \wedge dc + db \wedge dc$$

 $e^{[1]} = a, e^{[2]} = b, e^{[3]} = c$ $e^{[4]} = a, e^{[5]} = b, e^{[6]} = c$

Define the Kontsevich 2-form ω_K on each cell of $\mathfrak{T}_r^{comb}(\vec{L})$ by

$$\omega_{\mathsf{K}} \coloneqq \sum_{i=1}^n \frac{L_i^2}{2} \Psi_i, \qquad \Psi_i \coloneqq \sum_{\substack{\mathbf{e}_i^{[\sigma]} \prec \mathbf{e}_i^{[b]}}} \frac{d\ell_{\mathbf{e}_i^{[\sigma]}}}{L_i} \wedge \frac{d\ell_{\mathbf{e}_i^{[b]}}}{L_i},$$

where $e_i^{[1]}, e_i^{[2]}, \dots$ are the edges around the *i*th face of the ribbon graph underlying the cell, and \prec is the order on the edges induced by the orientation of the surface.



$$\begin{split} \Psi_1 &= \tfrac{2}{l^2} \big(da \wedge db + da \wedge dc + db \wedge dc \big) \\ \omega_K &= da \wedge db + da \wedge dc + db \wedge dc \end{split}$$

$$e^{[1]} = a, e^{[2]} = b, e^{[3]} = c$$

 $e^{[4]} = a, e^{[5]} = b, e^{[6]} = c$

Theorem (Kontsevich '92, Zvonkine '02)

- The form ω_{K} on $\mathfrak{T}^{\mathsf{comb}}_{\Sigma}(\vec{L})$ is symplectic and MCG invariant
- ullet The symplectic volume $V_{g,n}(ec{L})$ of $\mathfrak{M}_{g,n}^{\mathsf{comb}}(ec{L})$ is finite and given by

$$\int_{\mathcal{M}_{g,n}^{comb}(\vec{L})} \exp \left(\omega_{K} \right) = \int_{\overline{\mathcal{M}}_{g,n}} \exp \left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i} \right).$$

Upshot: the computation of all $\langle au_{d_1} \cdots au_{d_n} \rangle_g$ is equivalent to the computation of the symplectic volume $V_{g,n}(\vec{L})$.

Theorem (Kontsevich '92, Zvonkine '02)

- The form ω_{K} on $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L})$ is symplectic and MCG invariant
- ullet The symplectic volume $V_{g,n}(ec{L})$ of $\mathfrak{M}_{g,n}^{\mathsf{comb}}(ec{L})$ is finite and given by

$$\int_{\mathcal{M}_{\mathcal{G},n}^{comb}(\vec{L})} \exp \left(\omega_{K} \right) = \int_{\overline{\mathcal{M}}_{\mathcal{G},n}} \exp \left(\sum_{i=1}^{n} \frac{L_{i}^{2}}{2} \psi_{i} \right).$$

Upshot: the computation of all $\langle \tau_{d_1} \cdots \tau_{d_n} \rangle_g$ is equivalent to the computation of the symplectic volume $V_{g,n}(\vec{l})$.

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $\mathfrak{T}_{\Sigma}^{\mathsf{comb}}(\vec{L})$. Then

$$\omega_K = \sum_{i=1}^{3g-3+n} \text{d} \ell_i \wedge \text{d} \tau_i.$$

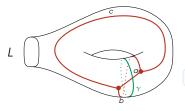
$$\omega_{K} = da \wedge db + db \wedge dc + da \wedge dc$$
$$dl \wedge d\tau = d(a + b) \wedge d(-a) = da \wedge db$$

$$d(2a+2b+2c)=0 \implies \omega_{K}=d\ell \wedge d\tau$$

Upshot: ω_K is compatible with cutting/gluing of embedded MRGs.

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{2g-3+n}$ on $T_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_K = \sum_{i=1}^{3g-3+n} \textit{d} \ell_i \wedge \textit{d} \tau_i.$$



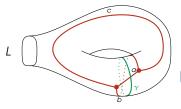
$$\label{eq:wk} \begin{split} \omega_K = da \wedge db + db \wedge dc + da \wedge dc \\ d\ell \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db \end{split}$$

$$d(2a+2b+2c)=0 \implies \omega_{K}=d\ell \wedge d\tau$$

Upshot: $\omega_{\rm K}$ is compatible with cutting/gluing of embedded MRGs.

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{2g-3+n}$ on $T_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_K = \sum_{i=1}^{3g-3+n} \textit{d} \ell_i \wedge \textit{d} \tau_i.$$



$$\omega_K = da \wedge db + db \wedge dc + da \wedge dc$$

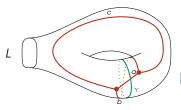
$$d\ell \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db$$

$$d(2a+2b+2c)=0 \implies \omega_{K}=d\ell \wedge d\tau$$

Upshot: ω_{K} is compatible with cutting/gluing of embedded MRGs.

For every choice of pants decomposition on Σ , we have a global coordinates $(\ell_i, \tau_i)_{i=1}^{3g-3+n}$ on $T_{\Sigma}^{\text{comb}}(\vec{L})$. Then

$$\omega_K = \sum_{i=1}^{3g-3+n} \textit{d} \ell_i \wedge \textit{d} \tau_i.$$



$$\omega_K = da \wedge db + db \wedge dc + da \wedge dc$$

$$d\ell \wedge d\tau = d(a+b) \wedge d(-a) = da \wedge db$$

$$d(2a+2b+2c)=0 \implies \omega_{K}=d\ell \wedge d\tau$$

Upshot: ω_{K} is compatible with cutting/gluing of embedded MRGs.

Let T be a torus with one boundary component.

Theorem (ABCGLW '20

For any $\mathbb{G} \in \mathfrak{T}^{\text{comb}}_{T}(L)$, we have

$$L = \sum_{\substack{\gamma \ ext{simple closed curve}}} \left[L - 2\ell_{\mathbb{G}}(\gamma)
ight]_{+}.$$

$$\begin{split} V_{1,1}(L) &= \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} \omega_K = \frac{1}{2} \int_0^\infty d\ell \, \ell \, \frac{\left[L - 2\ell\right]_+}{L} = \frac{L^2}{48} \\ V_{1,1}(L) &= \frac{L^2}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 \end{split} \\ \Longrightarrow \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{1}{24} \end{split}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$L = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+.$$

$$\begin{split} V_{1,1}(L) &= \int_{\mathfrak{M}_{1,1}^{\text{comb}}(L)} \omega_K = \frac{1}{2} \int_0^\infty d\ell \, \ell \, \frac{\left[L - 2\ell\right]_+}{L} = \frac{L^2}{48} \\ V_{1,1}(L) &= \frac{L^2}{2} \int_{\overline{\mathfrak{M}}_{1,1}} \psi_1 = \frac{1}{24} \end{split}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{comb}(L)} \omega_{K} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{\left[L - 2\ell\right]_{+}}{L} = \frac{L^{2}}{48}$$

$$\Rightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24}$$

$$V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{-1}} \psi_{1}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

$$\begin{aligned} V_{1,1}(L) &= \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} \omega_{K} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{\left[L - 2\ell\right]_{+}}{L} = \frac{L^{2}}{48} \\ V_{1,1}(L) &= \frac{L^{2}}{2} \left[\int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} \right] \end{aligned} \\ \Rightarrow \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{\mathsf{comb}}_{I}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{\text{comb}}(L)} \mathbf{1} \cdot \omega_{K} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{[L - 2\ell]_{+}}{L} = \frac{L^{2}}{48}$$

$$\Rightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \ ext{simple closed curve}}} rac{\left[L - 2\ell_{\mathbb{G}}(\gamma)
ight]_+}{L}.$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{comb}(L)} 1 \cdot \omega_{K} = \frac{1}{2} \int_{0}^{\infty} d\ell \, \ell \, \frac{[L - 2\ell]_{+}}{L} = \frac{L^{2}}{48}$$

$$\implies \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

$$V_{1,1}(L) = \int_{\mathcal{M}_{1,1}^{comb}(L)} \mathbf{1} \cdot \mathbf{\omega}_{K} = \frac{1}{2} \int_{0}^{\frac{L}{2}} d\ell \, \ell \, \frac{L - 2\ell}{L} = \frac{L^{2}}{48}$$

$$\Rightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24}$$

$$V_{1,1}(L) = \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

$$\begin{split} V_{1,1}(L) &= \int_{\mathcal{M}_{1,1}^{comb}(L)} \mathbf{1} \cdot \omega_{K} = \frac{1}{2} \int_{0}^{\frac{L}{2}} d\ell \, \ell \, \frac{L - 2\ell}{L} = \frac{L^{2}}{48} \\ &\qquad \qquad \Longrightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24} \end{split}$$

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

$$\begin{split} V_{1,1}(L) &= \int_{\mathcal{M}_{1,1}^{comb}(L)} \mathbf{1} \cdot \omega_K = \frac{1}{2} \int_0^{\frac{L}{2}} d\ell \, \ell \, \frac{L-2\ell}{L} = \frac{L^2}{48} \\ V_{1,1}(L) &= \frac{L^2}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 \end{split} \\ \Longrightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_1 = \frac{1}{24} \end{split}$$

A combinatorial McShane identity

Let T be a torus with one boundary component.

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\tau}(L)$, we have

$$1 = \sum_{\substack{\gamma \\ \text{simple closed curve}}} \frac{\left[L - 2\ell_{\mathbb{G}}(\gamma)\right]_+}{L}.$$

Here $[x]_{+} := \max(x, 0)$.

$$\begin{split} V_{1,1}(L) &= \int_{\mathcal{M}_{1,1}^{comb}(L)} \mathbf{1} \cdot \omega_{K} = \frac{1}{2} \int_{0}^{\frac{L}{2}} d\ell \, \ell \, \frac{L - 2\ell}{L} = \frac{L^{2}}{48} \\ V_{1,1}(L) &= \frac{L^{2}}{2} \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} \end{split} \\ \Longrightarrow \qquad \int_{\overline{\mathcal{M}}_{1,1}} \psi_{1} = \frac{1}{24}. \end{split}$$

A combinatorial Mirzakhani identity

Consider the following auxiliary functions $\mathcal{D}, \mathcal{R}: \mathbb{R}^3_+ \to \mathbb{R}_+$:

$$\begin{split} & \mathcal{D}(L,\ell,\ell') \coloneqq [L-\ell-\ell']_+ \\ & \mathcal{R}(L,L',\ell) \coloneqq \frac{1}{2} \Big([L-L'-\ell]_+ - [-L+L-\ell]_+ + [L+L'-\ell]_+ \Big) \end{split}$$

$$L_1 = \sum_{i=2}^n \sum_{\mathbf{\gamma}} \mathcal{R}(L_1, L_i, \ell_{\mathbf{G}}(\mathbf{\gamma})) + \frac{1}{2} \sum_{\mathbf{\gamma}, \mathbf{\gamma}'} \mathcal{D}(L_1, \ell_{\mathbf{G}}(\mathbf{\gamma}), \ell_{\mathbf{G}}(\mathbf{\gamma}')).$$

A combinatorial Mirzakhani identity

Consider the following auxiliary functions $\mathcal{D}, \mathcal{R}: \mathbb{R}^3_+ \to \mathbb{R}_+$:

$$\begin{split} \mathcal{D}(L, \ell, \ell') &\coloneqq [L - \ell - \ell']_{+} \\ \mathcal{R}(L, L', \ell) &\coloneqq \frac{1}{2} \Big([L - L' - \ell]_{+} - [-L + L - \ell]_{+} + [L + L' - \ell]_{+} \Big) \end{split}$$

Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{\Sigma}(\vec{L})$, we have

$$L_1 = \sum_{i=2}^n \sum_{\gamma} \Re(L_1, L_i, \ell_{\mathbf{G}}(\gamma)) + \frac{1}{2} \sum_{\gamma, \gamma'} \mathcal{D}(L_1, \ell_{\mathbf{G}}(\gamma), \ell_{\mathbf{G}}(\gamma')).$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ , γ' bounding a pair of pants with $\partial_1 \Sigma$.

A combinatorial Mirzakhani identity

Consider the following auxiliary functions $\mathcal{D}, \mathcal{R}: \mathbb{R}^3_+ \to \mathbb{R}_+$:

$$\begin{split} & \mathcal{D}(L,\ell,\ell') \coloneqq [L - \ell - \ell']_+ \\ & \mathcal{R}(L,L',\ell) \coloneqq \frac{1}{2} \Big([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \Big) \end{split}$$

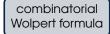
Theorem (ABCGLW '20)

For any $\mathbb{G} \in \mathfrak{T}^{comb}_{c}(\vec{L})$, we have

$$1 = \sum_{i=2}^{n} \sum_{\gamma} \frac{\mathcal{R}(L_1, L_i, \ell_{G}(\gamma))}{L_1} + \frac{1}{2} \sum_{\gamma, \gamma'} \frac{\mathcal{D}(L_1, \ell_{G}(\gamma), \ell_{G}(\gamma'))}{L_1}.$$

Here, the first sum is over simple closed curves γ bounding a pair of pants with $\partial_1 \Sigma$ and $\partial_i \Sigma$, and the second sum is over all pairs of simple closed curves γ, γ' bounding a pair of pants with $\partial_1 \Sigma$.

Witten-Kontsevich recursion



combinatorial Mirzakhani identity

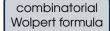
recursion for $V_{a,n}(\vec{L})$

The Kontsevich volumes are computed recursively by

$$\begin{split} V_{g,n}(L_1,\dots,L_n) &= \sum_{i=2}^n \int_{\mathbb{R}_+} d\ell\,\ell\, \frac{\mathcal{R}(L_1,L_i,\ell)}{L_1}\, V_{g,n-1}(\ell,L_2,\dots,\widehat{L}_i,\dots,L_n) \\ &+ \frac{1}{2} \int_{\mathbb{R}_+^2} d\ell d\ell'\, \ell\ell'\, \frac{\mathcal{D}(L_1,\ell,\ell')}{L_1} \bigg(V_{g-1,n+1}(\ell,\ell',L_2,\dots,L_n) \\ &+ \sum_{\substack{h+h'=g\\J \cup J'=\{L_2,\dots,L_n\}}} V_{h,1+|J|}(\ell,J)\, V_{h',1+|J'|}(\ell',J') \bigg) \end{split}$$

with initial conditions $V_{0,3}(L_1, L_2, L_3) = 1$ and $V_{1,1}(L) = \frac{L^2}{48}$.

Witten-Kontsevich recursion



combinatorial Mirzakhani identity

recursion for $V_{a,n}(\vec{L})$

The Kontsevich volumes are computed recursively by

$$\begin{split} V_{g,n}(L_1,\ldots,L_n) &= \sum_{i=2}^n \int_{\mathbb{R}_+} d\ell \, \ell \, \frac{\mathcal{R}(L_1,L_i,\ell)}{L_1} \, V_{g,n-1}(\ell,L_2,\ldots,\widehat{L_i},\ldots,L_n) \\ &+ \frac{1}{2} \int_{\mathbb{R}_+^2} d\ell d\ell' \, \ell \ell' \, \frac{\mathcal{D}(L_1,\ell,\ell')}{L_1} \bigg(V_{g-1,n+1}(\ell,\ell',L_2,\ldots,L_n) \\ &+ \sum_{\substack{h+h'=g\\J \sqcup J'=\{L_2,\ldots,L_n\}}} V_{h,1+|J|}(\ell,J) \, V_{h',1+|J'|}(\ell',J') \bigg). \end{split}$$

with initial conditions $V_{0,3}(L_1, L_2, L_3) = 1$ and $V_{1,1}(L) = \frac{L^2}{48}$.

Definition

A metric ribbon graph G is called integral if the length of every edge is a positive integer.

$$\mathbb{Z}\mathfrak{M}_{g,n}^{\mathsf{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} \mathsf{integral\ MRGs} \\ \mathsf{type}\ (g,n) \ \mathsf{and\ boundary\ } \vec{L} \end{array} \right\} \subset \mathfrak{M}_{g,n}^{\mathsf{comb}}(\vec{L}).$$

$$N_{g,n}(\vec{L}) := \sum_{G \in \mathbb{Z} \mathbb{M}_{G,n}^{comb}(\vec{L})} \frac{1}{\operatorname{Aut}(G)}.$$

Definition

A metric ribbon graph G is called integral if the length of every edge is a positive integer.

$$\mathbb{ZM}_{g,n}^{\mathsf{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} \mathsf{integral\ MRGs} \\ \mathsf{type}\ (g,n) \ \mathsf{and\ boundary\ } \vec{L} \end{array} \right\} \subset \mathcal{M}_{g,n}^{\mathsf{comb}}(\vec{L}).$$

We can count integral points as

$$N_{g,n}(\vec{L}) \coloneqq \sum_{G \in \mathbb{Z} \times \mathbb{M}_{g,n}^{comb}(\vec{L})} \frac{1}{Aut(G)}.$$

Definition

A metric ribbon graph G is called integral if the length of every edge is a positive integer.

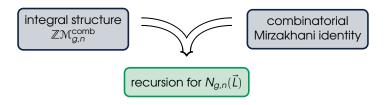
$$\mathbb{Z}\mathbb{M}_{g,n}^{\mathsf{comb}}(\vec{L}) \coloneqq \left\{ \begin{array}{c} \mathsf{integral\ MRGs} \\ \mathsf{type}\ (g,n) \ \mathsf{and\ boundary\ } \vec{L} \end{array} \right\} \subset \mathbb{M}_{g,n}^{\mathsf{comb}}(\vec{L}).$$

We can count integral points as

$$N_{g,n}(\vec{L}) \coloneqq \sum_{G \in \mathbb{Z} \times \mathbb{C}_{G,n}^{comb}(\vec{L})} \frac{1}{Aut(G)}.$$

Idea. $N_{g,n}(\vec{l})$ is the volume of the combinatorial moduli space w.r.t the "counting measure", that is Dirac deltas at the integral points.

Norbury recursion from Mirzakhani

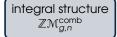


The numbers of integral MRGs are computed recursively by

$$\begin{split} N_{g,n}(L_{1},\ldots,L_{n}) &= \sum_{i=2}^{n} \sum_{\ell \geqslant 1} \ell \frac{\mathcal{R}(L_{1},L_{i},\ell)}{L_{1}} N_{g,n-1}(\ell,L_{2},\ldots,\widehat{L}_{i},\ldots,L_{n}) \\ &+ \frac{1}{2} \sum_{\ell,\ell' \geqslant 1} \ell \ell' \frac{\mathcal{D}(L_{1},\ell,\ell')}{L_{1}} \left(N_{g-1,n+1}(\ell,\ell',L_{2},\ldots,L_{n}) + \sum_{\substack{h+h'=g\\J \sqcup J'=\{L_{2},\ldots,L_{n}\}}} N_{h,1+|J|}(\ell,J) N_{h',1+|J'|}(\ell',J') \right) \end{split}$$

with $N_{0,3}(L_1,L_2,L_3)=\frac{1+(-1)^{L_1+L_2+L_3}}{2}$ and $N_{1,1}(L)=\frac{1+(-1)^{L}}{2}\frac{L^2-4}{48}$

Norbury recursion from Mirzakhani



combinatorial Mirzakhani identity

recursion for $N_{a,n}(\vec{L})$

The numbers of integral MRGs are computed recursively by

$$\begin{split} N_{g,n}(L_1,\dots,L_n) &= \sum_{i=2}^n \sum_{\ell\geqslant 1} \ell \, \frac{\mathcal{R}(L_1,L_i,\ell)}{L_1} \, N_{g,n-1}(\ell,L_2,\dots,\widehat{L}_i,\dots,L_n) \\ &+ \frac{1}{2} \sum_{\ell,\ell'\geqslant 1} \ell \ell' \, \frac{\mathcal{D}(L_1,\ell,\ell')}{L_1} \bigg(N_{g-1,n+1}(\ell,\ell',L_2,\dots,L_n) \\ &+ \sum_{\substack{h+h'=g\\ J\sqcup J'=\{L_2,\dots,L_n\}}} N_{h,1+|J|}(\ell,J) \, N_{h',1+|J'|}(\ell',J') \bigg). \end{split}$$
 with $N_{0,3}(L_1,L_2,L_3) = \frac{1+(-1)^{L_1+L_2+L_3}}{2}$ and $N_{1,1}(L) = \frac{1+(-1)^L}{2} \frac{L^2-4}{48}.$

Multicurve count

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{T}_{\Sigma}^{comb} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function.

$$\mathcal{N}_{\Sigma}(\mathbb{G};t) \coloneqq \# \left\{ \gamma \mid \substack{\mathsf{multicurve in } \Sigma \\ \mathsf{with } \ell_{\mathbb{G}}(\gamma) \leqslant t} \right\}.$$

Theorem (ABCGLW '20)

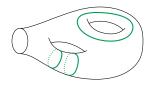
- The counting function $\mathcal{N}_{\Sigma}(\mathbb{G};t)$ is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\langle \mathcal{N}_{g,n} \rangle (\vec{L};t) := \int_{\mathcal{M}_{G,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \frac{\omega_{K}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{T}_{\Sigma}^{comb} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function.

$$\mathcal{N}_{\Sigma}(\mathbb{G};t) \coloneqq \# \left\{ \gamma \mid \substack{\text{multicurve in } \Sigma \\ \text{with } \ell_{\mathbb{G}}(\gamma) \leqslant t} \right\}.$$



Theorem (ABCGLW '20)

- The counting function $\mathcal{N}_{\Sigma}(\mathbb{G};t)$ is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

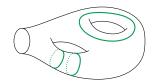
$$\langle \mathcal{N}_{g,n} \rangle (\vec{L};t) := \int_{\mathcal{M}_{g,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \frac{\omega_{K}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion

Multicurve count

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{T}_{\Sigma}^{comb} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function,

$$\mathcal{N}_{\Sigma}(\mathbb{G};t) \coloneqq \# \left\{ \gamma \mid \substack{\text{multicurve in } \Sigma \\ \text{with } \ell_{\mathbb{G}}(\gamma) \leqslant t} \right\}.$$



Theorem (ABCGLW '20)

- The counting function $\mathcal{N}_{\Sigma}(\mathbb{G};t)$ is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\left\langle \mathcal{N}_{g,n} \right\rangle (\vec{L};t) \coloneqq \int_{\mathcal{M}_{G,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \, \frac{\omega_{\mathsf{K}}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion.

Define $\mathcal{N}_{\Sigma} \colon \mathfrak{T}_{\Sigma}^{comb} \times \mathbb{R}_{+} \to \mathbb{N}$ the counting function,

$$\mathcal{N}_{\Sigma}(\mathbb{G};t) \coloneqq \# \left\{ \gamma \mid \substack{\mathsf{multicurve in } \Sigma \\ \mathsf{with } \ell_{\mathbb{G}}(\gamma) \leqslant t} \right\}.$$

Theorem (ABCGLW '20)

- The counting function $\mathcal{N}_{\Sigma}(\mathbb{G};t)$ is computed by a Mirzakhani-type recursion (geometric recursion).
- It is MCG invariant, and its mean value

$$\left\langle \mathcal{N}_{g,n} \right\rangle (\vec{L};t) \coloneqq \int_{\mathcal{M}_{G,n}^{\text{comb}}(\vec{L})} \mathcal{N}_{g,n}(G;t) \, \frac{\omega_{\mathsf{K}}^{3g-3+n}}{(3g-3+n)!}$$

is computed by topological recursion.

To conclude we obtained:

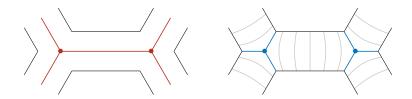
- global length/twist coord's on $\mathfrak{T}_{\Sigma}^{\text{comb}}(\vec{L})$
- a combinatorial Wolpert formula for ω_K
- a Mirzakhani identity, from which we gave a geometric proof of:
 - Witten-Kontsevich recursion for symplectic volumes/ψ-intersections
 Norbury's recursion for lattice pnts
- a recursion for the multicurve counting and Masur-Veech volumes
- * a PL manifold structure on $\mathfrak{T}^{\mathsf{comb}}_{\mathtt{F}}(\vec{L})$
- * a flow $\sigma^t\colon \mathfrak{T}^{\mathsf{hyp}}_{\Sigma}(\vec{L}) o \mathfrak{T}^{\mathsf{hyp}}_{\Sigma}(\vec{L})$ that limits to $\mathfrak{T}^{\mathsf{comb}}_{\Sigma}(\vec{L})$

Thank you!

- J.E. Andersen, G. Borot, S. Charbonnier, A. Giacchetto, D. Lewański, C. Wheeler. "On the Kontsevich geometry of the combinatorial Teichmüller space". (2020) arXiv:2010.11806 [math.DG].
- J.E. Andersen, G. Borot, N. Orantin. "Geometric recursion". (2017) arXiv:1711.04729 [math.GT].
- M. Kontsevich "Intersection theory on the moduli space of curves and the matrix Airy function". Commun. Math. Phys. 147 (1992).
- 4. M. Mirzakhani "Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces". *Invent. Math.* 167.1 (2007).
- P. Norbury "Counting lattice points in the moduli space of curves". Math. Res. Lett. 17 (2010).
- 6. E. Witten "Two-dimensional gravity and intersection theory on moduli space". Surv. Diff. Geom. 1.1 (1990).

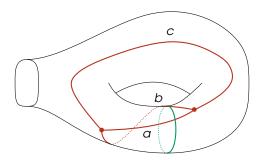
Measured foliations •00

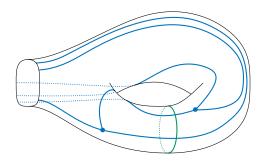
> Every embedded MRG $\mathbb{G} \in \mathcal{T}_{r}^{comb}$ defines an (isotopy class of) measured foliations on Σ . Locally:

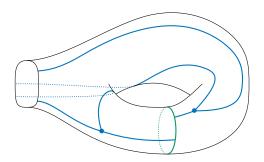


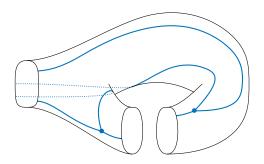
Measured foliations dual to embedded MRGs

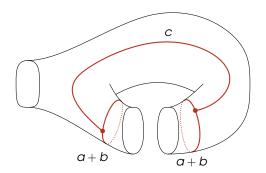
- are always transverse to $\partial \Sigma$,
- do not contain saddle connections (i.e. singular leaves connecting singular points).



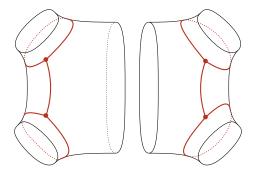




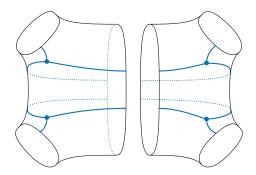




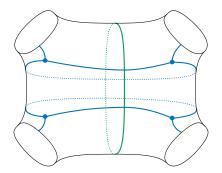
Non-admissible gluing



Non-admissible gluing



Non-admissible gluing



Geometric kernels

Lemma

For a fixed pair of pants P, identify $\mathbb{R}^3_+ \cong \mathfrak{T}^{\text{comb}}_P$.

The function

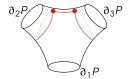
$$\mathfrak{D}(L,\ell,\ell') := [L - \ell - \ell']_{+}$$

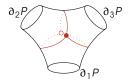
associates to a point $(L,\ell,\ell')\in \mathfrak{T}^{comb}_p$ the fraction of \mathfrak{d}_1P that is not common with $\mathfrak{d}_2P\cup\mathfrak{d}_3P$ (once retracted to the graph).

The function

$$\mathcal{R}(L, L', \ell) := \frac{1}{2} \Big([L - L' - \ell]_+ - [-L + L - \ell]_+ + [L + L' - \ell]_+ \Big)$$

associates to $(L, L', \ell) \in \mathcal{T}_p^{\text{comb}}$ the fraction of the $\partial_1 P$ that is not common with $\partial_3 P$ (once retracted to the graph).





-

• Symplectic volumes $V_{g,n}(\vec{L})$:

$$\mathcal{C} = \mathbb{C}$$
 $x(z) = \frac{z^2}{2}$ $y(z) = z$ $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

• Lattice point count $N_{g,n}(\vec{L})$:

$$C = C$$
 $x(z) = z + \frac{1}{z}$ $y(z) = z$ $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$

• Average number of multicurves $\langle \mathcal{N}_{g,n} \rangle$ $(\vec{L};t)$ of length $\leqslant t$:

$$\mathcal{C} = \mathbb{C} \qquad x(z) = \frac{z^2}{2} \qquad y(z) = z$$

$$B(z_1, z_2) = \left(\frac{1}{(z_1 - z_2)^2} + \frac{(s\pi)^2}{\sin^2(s\pi(z_1 - z_2))}\right) \frac{dz_1 dz_2}{2}$$

	EO topological recursion	Free space
		•0

Measured foliations 000	Kernels O	EO topological recursion O	Free space O●