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For g,n > 0such that 2g — 2 + n > 0, consider the moduli space of
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which is a smooth complex orbifold of dimension 3g — 3 + n. It admifs a
compactification Mg p.
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Moduli space of curves

For g,n > 0such that 2g — 2 + n > 0, consider the moduli space of
curves

Mgn = { Cp,..., Pn)

which is a smooth complex orbifold of dimension 3g — 3 + n. It admifs a
compactification Mg p.

C cmplx cmpct curve
genus g with n marked pnts

Fundamental problem

Understand H* (Mg,n). H*(Mgn) and its intersection theory:
e generators and relations,
e differential forms representing cohomology classes,
e efficient computation of intersection numbers,
* enumerative-geometric interactions
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Different geometric models

There exists various modular interpretation of Mg . Alternative modular
definitions lead to different geometric structures.

* Moduli space Mg?,f”b(f) of metric ribbon graphs equipped with the
Kontsevich symplectic form w.

* Moduli space MBY,E’(Z) of hyperbolic surfaces equipped with the
Weil-Petersson symplectic form wwe.

* Moduli space M (&) of flat surfaces equipped with the Veech
volume form.
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The combinatorial model

The combinatorial moduli space

comb — G metric ribbon graph of genus g f
M (L ) - { G ‘ with n bndrs of length L isometry

has a natural symplectic form wy.

Theorem (Jenkins-Strebel ‘60s, Kontsevich ‘92, Zvonkine ‘02)

® For every Le R7, there is an orbifold isomorphism Mcomb(f) = Mgn.
® The symplectic volumes are finite and given by

exp(wk) Jﬁgn exp (Z —Lap; )

® The symplectic volumes are computed recursively on 2g—2+n
(Witten’s conjecture).

J MEIR (D)

Today’s falk: new proof of Witten’s conjecture, based on the geometry
ova[C"mb( ) and parallel to Mirzakhani’s proof in the hyperbolic setting
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Ribbon graphs

Definition

A ribbon graph is a graph G with a cyclic order of the edges at each
vertex.

1G] Gl

We have well-defined
e genusg >0,
e number of boundary componentsn > 1.

We call (g, n) the type of the ribbon graph. Boundaries are assumed
to be labeled.
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Metric riblbbon graphs

Definition

A metric ribbon graph is a ribbon graph G with an assignment
(: Ec — R,. The space of such metrics is IRiG.

G ® G’
57 V2 57 V2

(7,[61 G) =57+4+mn

00,6) =+ V2 00,G') =2(57 + t+V?2)

0(33G) =57 + V2
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The combinatorial moduli space

Define the combinatorial moduli space

Ec
R

comb .__
Mgn™ = Aut(G)’

G ribbon graph
of type (g.n)

where we glue orbicells through degeneration of edges.

We have a map p: Mcomb — R7, assigning to each metric ribbon
graph the length of the labeled faces. We set Mcomb(L) =p~ (D).

Proposition (Jenkins ‘57, Strebel ‘67, Zvonkine '02)

Mg?nmb(f) is a real topological orbifold of dimension 6g — 6 + 2n, and
there exists a homeomorphism of fopological orbifolds

-

MEP(D) = Mg



The combinatorial model
[e]o]ee] lele)

The combinatorial Teichmuller space

Consider a topological, compact, oriented surface * of genus g > 0,
with n > 1 labeled boundaries 01LZ, ..., 0,Z.



The combinatorial model
[e]o]ee] lele)

The combinatorial Teichmuller space

Consider a topological, compact, oriented surface * of genus g > 0,
with n > 1 labeled boundaries 01LZ, ..., 0,Z.

Define the combinatorial Teichmuller space
7m0 (G

Gis a MRG embedded intfo £ ~
s.t. Gis a deformation retract of £

where two embedded MRGs are identified iff
e they are isometric as MRGs,
¢ the embeddings are isotopic.



The combinatorial model
[e]o]ee] lele)

The combinatorial Teichmuller space

Consider a topological, compact, oriented surface * of genus g > 0,
with n > 1 labeled boundaries 1%, . . ., onX.

Define the combinatorial Teichmuller space
g (G x

where two embedded MRGs are identified iff
e they are isometric as MRGs,
¢ the embeddings are isotopic.

=) 15

G is a MRG embedded info £ ~
s.t. Gis a deformation retract of £



The combinatorial model
[e]o]ee] lele)

The combinatorial Teichmuller space

Consider a topological, compact, oriented surface * of genus g > 0,
with n > 1 labeled boundaries 1%, . . ., onX.
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e they are isometric as MRGs,
¢ the embeddings are isotopic.

We have a map 7: 7geme — Mg?,?‘b, that forgets about the embedding.

=) 15

Gis a MRG embedded intfo £ ~
s.t. Gis a deformation retract of £



The combinatorial model
[e]o]ee] lele)

The combinatorial Teichmuller space

Consider a topological, compact, oriented surface * of genus g > 0,
with n > 1 labeled boundaries 1%, . . ., onX.

Define the combinatorial Teichmuller space
7m0 (G

where two embedded MRGs are identified iff
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Again we have a map p: T2 — R7, assigning to each metric ribbon
graph the length of the labeled faces. We set 78 ([) .= p~ ().
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The combinatorial Teichmuller space

Again we have a map p: T2 — R7, assigning to each metric ribbon
graph the length of the labeled faces. We set 78 ([) .= p~ ().

Proposition

° ‘.Tgomb(f) is a real topological manifold of dimension 6g — 6 + 2n.
¢ The mapping class group Mods := Homeo™ (£, 9X)/ Homeog (%) is
acting on 7¢°M°([), and

T ([)/ Mods = M (L).
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Embedded MRGs and measured foliations

Every embedded MRG G € T¢°™° defines an (isotopy class of)
measured foliations on . Locally:

s tie

Measured foliations dual to embedded MRGs
e are always transverse 1o 0%,

* do not contain saddle connections (i.e. singular leaves
connecting singular points).
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O
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Length of simple closed curve

Fix a simple closed curve y in £, and G € T7¢°™°. Define the length of v
with respect to G:

e homotope y to the embedded graph,
¢ sum up the lengths of the edges vy travels through.

tcly) =c+d+2e+f.
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Cutting

Fix v is a simple closed curve in £ and G € Jg°me,

Lemma

It is possible to cut G along y and obtain a new embedded MRG on
the cut surface.

L ==

a-+b a-+b
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Example of cutting

a+b a+b
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Fix G € 73°™°, G’ € TP, and 9;£, 9;Z’ boundary components such
that {g(0;2) = €/ (0;X"). Fix an identification 9, ~ 9,L’.
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that £5(9,Z) = €s/(9,L"). Fix an identification 9, ~ 9,L’.
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Lemma
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Combinatorial Fenchel-Nielsen coordinates

Fix a pants decomposition @ = (v1, ..., v3g-3+n) Of Z. We have a map

FN: T2™(0) — (R x R) 7
G+— (f@(Y/), TG('YI'))?:Q;SJM

called the combinatorial Fenchel-Nielsen coordinates.
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Fix a pants decomposition @ = (yy, ..., Y3g-3+n) Of Z. We have a map

FN: T2™(0) — (R x R) 7
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called the combinatorial Fenchel-Nielsen coordinates.
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Combinatorial Fenchel-Nielsen coordinates

Fix a pants decomposition @ = (yy, ..., Y3g-3+n) Of Z. We have a map

FN: T2m0(D) — (R, x R)%0-3+"
6 — (ts(vi), t6(v));% """

called the combinatorial Fenchel-Nielsen coordinates.

< >

‘ = (a+b,—a)

o . FN(G) = (€s(v), T6(v))

Question

Does ({s(vi), t6(vi)) determine G?
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Combinatorial Fenchel-Nielsen coordinates

Theorem (Andersen, Borot, Charbonnier, AG, Lewanski, Wheeler)
For every choice of @, the map

FN: T80 (L) — (R x R)%9-3+N

is @ homeomorphism onto ifs image, with an open dense image.
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The Kontsevich form

Define the Kontsevich 2-form wy on each cell of ‘Igomb(f) by

N2 dl o Al b
wk=Y S W= > A
i— i i

ef[a] <ei[b]

where e,.[”, e,.m, ... are the edges around the ith face of the ribbon

graph underlying the cell, and < is the order on the edges induced by
the orientation of the surface.
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The Kontsevich form

Define the Kontsevich 2-form wy on each cell of ‘Igomb(f) by

N2 dl o Al b
wk=Y S W= > AT
i— i i

lal bl
1

42

where e, ', ¢, ... are the edges around the ith face of the ribbon

graph underlying the cell, and < is the order on the edges induced by
the orientation of the surface.

Wy = Z(daAdb+ daAdc+ dbAdc)

L . e w = da A db+daAde+ dbAde

elll — g el2l —p, el3 —¢
eldl — g, el —p, elé] — ¢
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The symplectic volumes

Theorem (Kontsevich ‘92, Zvonkine ‘02)

e The form wg on Ugomb(f) is symplectic and MCG invariant
* The symplectic volume V(L) of M (L) is finite and given by

n L2
exp(wk) = J; exp (Z 5’1]),').
n =1

J MEIR (D) Mg,
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The symplectic volumes

Theorem (Kontsevich ‘92, Zvonkine ‘02)

e The form wg on Ugomb(f) is symplectic and MCG invariant
* The symplectic volume V(L) of M (L) is finite and given by

n L2
exp(wk) = J; exp (Z 5’1]),').
n =1

J MEIR (D) Mg,

Upshot: the computation of all (tq, - - ~Tdn>g is equivalent to the

computation of the symplectic volume Vg ,(L).
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A combinatorial Wolpert formula

Theorem (ABCGLW ‘20)

For every choice of panfs decomposition on £, we have a global
coordinates (¢, )9, " on T7g°™°(L). Then

3g—3+n
Wk = Z de,'/\d’t,'.

i=1
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A combinatorial Wolpert formula

Theorem (ABCGLW ‘20)

For every choice of panfs decomposition on £, we have a global
coordinates (¢, )9, " on T7g°™°(L). Then

3g—3+n
Wk = Z de,'/\d’t,'.

i=1

wg =daANdb+ db A dc+ daA dc

. dt Adt=d(a+b)Ad(—a)=daAdb
L < >

(d(zo+2b+2c) By — wK:de/\de

Upshot: wy is compatible with cutting/gluing of embedded MRGs.
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RLL O = (-l 8 — L L0 + L+ L~ 0
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Here, the first sum is over simple closed curves y bounding a pair of
pants with 9, Z and 0,2, and the second sum is over all pairs of simple
closed curves v, y’ bounding a pair of pants with 9, Z.
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Consider the following auxiliary functions D, R: R® — R,
DL L) =[L—0—0],
RLL O = (-l 8 — L L0 + L+ L~ 0

where [x], = max{x,0}.

Theorem (ABCGLW ‘20)

For any G € T ([), we have

1—ZZ L1L€@ ))+% D(LlyeG(Z/]),eG(Y,)).

i=2 v Y.v'

Here, the first sum is over simple closed curves y bounding a pair of
pants with 9, Z and 9,2, and the second sum is over all pairs of simple
closed curves v, y’ bounding a pair of pants with 9, Z.
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Idea of the proof

* Fix a random point p € 9;Z and shoot a geodesic arc «p, i.e. a
leaf in the dual foliation

o
<1y

4
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w
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* Fix a random point p € 9;Z and shoot a geodesic arc «p, i.e. a
leaf in the dual foliation

e For a.e. point p, a, Will hit another boundary component
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Idea of the proof

* Fix a random point p € 9;Z and shoot a geodesic arc «p, i.e. a
leaf in the dual foliation

e For a.e. point p, a, Will hit another boundary component

® The arc «, determines a pair of pants Pg with 0Pg = (01X, 9,Z,v), or
a pair of pants Pc with 0Pc = (01Z,v,v')

P(obﬁgin) + Z P(otggin)
Pc
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Witten-Kontsevich recursion

[ combinatorial combinatorial ]

Wolpert formulo] Y [Mirzc:khoni identity

[recursion for Vg,n(Z)]

The Kontsevich volumes are computed recursively by

n
R(Ly, L, € ~
Von(Li, ..., L,,):ZJ du%v&n,w(u2 ..... Lo....Ly)

j=2 /R

+3 JR2 dede’ e’ %f'“ (vg,mﬂ (¢, ¢ Ly, ... Lp)
+

) Ve @D Vi (e’,J/)).
h+h’ =g
Jud' ={ly,...Ln}

2

with initial conditions Vg s(Ly, Ly, L3) = 1 and V(L) = j—s.
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Intfegral structure

Definition
A metric ribbon graph G is called integral if the length of every edge is
a positive integer.

comb (7 .__ integral MRGs comb (T
ZMQYD (L) = { type (g, n) and boundoryl'} C Mgvn (L)

We can count integral points as

, 1
Nonll) = 3 Aut(G)"

GeZMEA™ (D)

-

Idea. Ngn(L) is the volume of the combinatorial moduli space w.r.t the
“counting measure”, that is Dirac deltas at the integral points.
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Norbury recursion fromn Mirzakhani

[in’regrol structure combinatorial ]

ZMgRe ] Y [Mirzokhoni identity

[reoursion for Ng,n(L) ]

The numbers of integral MRGs are computed recursively by

R(Ly, 1;,0) ~
Non(Ly, ... ZZ@ 7 Non 1(€ Lo, Ly L)
=201
(Ly, ¢, ¢
Y u/‘i)(/vg (G L L)
,e/>1

+ > Naud) Nh/,]HJ,‘(e',J'))
h+h’7g
Jud' ={ly,...Ln}

(—1yhHo g

with Nog (L1, Ly, Lg) = “HEIIT2T8 gng Ny (1) = AR 224
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Multicurve count

Define Ns: 7™ x R, — N the counting
function, .
/()

[ti
Ne(6:1) = #{ v | THleg 2
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Multicurve count

Define Ns: 7™ x R, — N the counting
function, .

Nx(Gih) = {v | TREHI 2T - '
Theorem (ABCGLW ‘20)

¢ The counting function Nx (G; 1) is computed by a Mirzakhani-type
recursion (geometric recursion).
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¢ The counting function Nx (G; 1) is computed by a Mirzakhani-type
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e |t is MCG invariant, and its mean value

3g—3+n
Wy

<Ng.n> (L) = m

J = Ng,n(G; f)
Megp

is computed by topological recursion.
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Multicurve count

Define Ns: 7™ x R, — N the counting
function, .

Nx(Gih) = {v | TREHI 2T - '
Theorem (ABCGLW ‘20)

¢ The counting function Nx (G; 1) is computed by a Mirzakhani-type
recursion (geometric recursion).

e |t is MCG invariant, and its mean value

3g—3+n
Wy

Ngn(G; 1) Bg-31n)

O Th=|
RAZI(I)
is computed by topological recursion.

* Taking the asymptotic as t — oo, we get the Masur-Veech volumes
of the moduli space of quadratic differentials.



To conclude we obtained:

-

e global length/twist coord’s on T¢oMP(L)

e a combinatorial Wolpert formula for wg

* a Mirzakhani identfity, from which we gave a geometric proof of:
o Witten-Kontsevich recursion for symplectic volumes/1-intersections
o Norbury’s recursion for lattice pnts

® arecursion for the multicurve counting and Masur-Veech volumes
* a PL manifold structure on ‘Igomb([)

« arescaling flow of : TP ([) — TP (L) that limits to T¢O™P ()
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Geometric kernels

Lemma

For a fixed pair of pants P, identify RS = ‘J'gomb.

® The function
DL e ) =[L—¢—¢0'],

associates to a point (L, ¢,¢') € ‘Igomb the fraction of 9;P that is not
common with 9,P U 93P (once retracted to the graph).

® The function
R(L L) = %([qufmf [L4+L—ey +[L+ Lum)

associates to (L, L', ¢) € ‘J'gomb the fraction of the 9P that is not common
with 93P (once refracted to the graph).

62P 83P 82 3P

0P < %.p
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Spectral curves

* Symplectic volumes V »(L):

dZ] C/ZQ
=z B(z1,2) = ————=
2. 2) (21 — 2)?
* Lattice point count Ny ,(L):
e=C x(z):z+% y(z)=2z

2
B(z1,22):( L

(21 =2)?  sin®(sn(z1 — 2))

dz 1 d22
2
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