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Motivation and outline

[ Jelelele}

Motivation

Algebraic Integrable
geometry systems

Started with Witten conjecture/Kontsevich theorem

Other enumerative problem, e.g. Hurwitz numbers

Generalised to Virasoro constraints in GW theory

® |nvolves other theories, e.g. fopological recursion, Frobenius
mnflds, etc



Motivation and outline

[e] lelele}

The r-spin theorem

Theorem (Witten, Kontsevich, Polischuk-Vaintrob, Givental, Adler~van

Moerbeke, Faber-Shadrin—Zvonkine)

o WITTEN r-SPIN CLASS. Forr >2and0< g <r—1,

of pure degree, constructed from the moduli space of r-th roots and
satisfying certain axioms.
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The r-spin theorem

Theorem (Witten, Kontsevich, Polischuk-Vaintrob, Givental, Adler~van

Moerbeke, Faber-Shadrin—Zvonkine)

o WITTEN r-SPIN CLASS. Forr >2and0< g <r—1,

of pure degree, constructed from the moduli space of r-th roots and
satisfying certain axioms.
e TR AND W-CNSTRNTS. The descendant potential

h2g72

n
(i o
g.n T kgt Man '

is computed from topological recursion on

] - i’ _ - CIZ] O’ZQ
P x@=-—. y@=-z B(Z1v22)—7(z]_z2)2-
Equivalently, Z1) is the unique solution to certain W-cnstrnts:

Wy,2" =0, i=1,...rk>-1.
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o r-KDV. Z1 is the unique tau-fnctn of the r-KdV hierarchy satisfying the
string equation W, ;7" = 0.
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The r-spin theorem
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o r-KDV. Z1 is the unique tau-fnctn of the r-KdV hierarchy satisfying the
string equation W, ;7" = 0.

o MATRIX MODELS. Z(") coincide with the higher Airy matrix integral:
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to the Verlinde algebra of sl,(C) at level r.
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The r-spin theorem

Theorem

o r-KDV. Z1 is the unique tau-fnctn of the r-KdV hierarchy satisfying the
string equation W, ;7" = 0.

o MATRIX MODELS. Z(") coincide with the higher Airy matrix integral:

1
n_ '
Z o

M1

J ef% Tr( = +AM) dM
Hn

o VERLINDE ALGEBRA. The correlators W , define an algebra isomorphic
to the Verlinde algebra of sl,(C) at level r.

o HYPERBOLIC GEOMETRY & JT GRAVITY. Forr =2,
W3,0,..., 0)=1.

When coupled with exp(27°k1), the recursion is a consequence of
Mirzakhani’s identity. It has connection with JT gravity.
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The negative side of the story

Theorem (CGG)
e THETA r-SPIN CLASS. Forr>2andO< a, <r—1,

@rg,n(cﬁ ----- an) € H.(ﬁg,n)

of pure degree, constructed from the moduli space of negative r-th
roots and satisfying certain axioms.
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e THETA r-SPIN CLASS. Forr>2andO< a, <r—1,
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The negative side of the story

Theorem (CGG)
e THETA r-SPIN CLASS. Forr>2andO< a, <r—1,

@rg,n(cﬁ ----- an) € H.(ﬁg,n)

of pure degree, constructed from the moduli space of negative r-th
roots and satisfying certain axioms.
e TR AND W-CNSTRNTS. The descendant potential

75D = exp ( hzg ’ ZJ ----- Qn) Hlpfifki,a,)

is computed from topological recursion on

dz;dz
P!, X(Z):Tv y(z)=-z B(Z1'Z2)Zﬁ-

Equivalently, Z(=") is the unique solution to certain W-cnstrnts:

Wi 2N =0, i=1,....rk=>2—1i
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The negative side of the story

Conjecture (Proved for r = 2, 3)

o r-KDV. Z(=7 is the unique tau-fnctn of the r-KdV hierarchy satisfying
the string equation W, , ,Z&-" =0.



Motivation and outline

[e]e]ele] J

The negative side of the story

Conjecture (Proved for r = 2, 3)

o r-KDV. Z(=7 is the unique tau-fnctn of the r-KdV hierarchy satisfying
the string equation W, , ,Z&-" =0.

o MATRIX MODELS. Z(=" coincide with the higher Bessel matrix integral
(known as the BEGW model):
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The negative side of the story

Conjecture (Proved for r = 2, 3)

o r-KDV. Z(=7 is the unique tau-fnctn of the r-KdV hierarchy satisfying
the string equation W, , ,Z&-" =0.

o MATRIX MODELS. Z(=" coincide with the higher Bessel matrix integral
(known as the BEGW model):

_ U
- =

—r+1 PN
J eféTr(M 1 —/AM+hNlog(M)) am
Hn

7=

e SUPER HYPERBOLIC GEOMETRY & SUPER JT GRAVITY. Forr =2,
2
©%,(1,...,1) = 6g,

was infroduced by Norbury (who conjectured TR, Virasoro cnstrnts,
KdV). when coupled with exp(2n°k;), the recursion is a consequence
of super Mirzakhani’s identity. It has connection with super JT gravity.
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The moduli space of curves

The moduli space of curves

C cmplx cmpct stbl curve } /

Mg,n =< (C,p1,...,Pn) | genus g with at worst nodal sing.
Pri.-os pn marked pnts

is a cmpct orbifold of dim¢ =3g—3 + n.
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The moduli space of curves

The moduli space of curves

Mg,n = { (C,p1,...,Pn) | genus g with at worst nodal sing.

C cmplx cmpct stbl curve /
Pri.-os pn marked pnts

is a cmpct orbifold of dim¢ =3g—3 + n.

* Attaching maps:

q: Mg—l,mrz — Mg,n
r: Mg, m+1 X Mg, n1 — Mgn
® Forgetful maps: o o
Pm: Mgnem = Mgn
e Natural classes: consider the vector bundle L; — Mg, with fiores

Y= (L) € Hz(ﬁg,n)x Km = P (Ppq) € Hzm(ﬁg,n)-
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Collection of cohomology classes that behaves well when restricted
to the boundary are called cohomological field theories (CohFT).

Let I be a finite set (colours/primary fields), n = (n;;) a nhon-degenerate
bilinear form on V = spang/. A CohFT is a collection of cohomology
classes
Qgnl(on,...,an) € H* (Mgn), ael

satisfying:

® SYMMETRY under the action of S,

® RESTRICTION AXIOMS:

' Qgnlan,....an) =Y Qg qnin(ar,....aniJ)
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ijel
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More natural classes

Collection of cohomology classes that behaves well when restricted
to the boundary are called cohomological field theories (CohFT).

Let I be a finite set (colours/primary fields), n = (n;;) a nhon-degenerate
bilinear form on V = spang/. A CohFT is a collection of cohomology
classes o
Qgnlon, ..., an) € H* (Mg n), g el
satisfying:
® SYMMETRY under the action of S,
® RESTRICTION AXIOMS:
a" Qgnlar,....an) =) nQg 1 n2(ar,...,0ni))
ijel
rQgn(an,...,an) =Y n"(Qg 1 ® Qg nps1)(ar,- ., On,hi))
ijel
A special class of CohFT, called semisimple, are fully understood.

Theorem (Teleman’s reconstruction theorem)

If O is a semisimple CohFT, then

Q = explicit expression in terms of - and k-classes.
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Define the vector bundle V — ﬁ]g{é] _____ an

and define the r-spin Theta class

®rg,n(al ----- Qp) = * f, Crop(V).
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The Theta class

Fix r>2,0< a; < r— 1. Consider the moduli space of negative r-th
roofts:

ﬁ;{; _____ aw=1(Cp..., Pn L) | L7 = wieg,c(Y_;aipi) } / ~

Define the vector bundle V — ﬁ]g{é] _____ an
Vlicp,ont) = H'(C, L).
and define the r-spin Theta class

®rg,n(al ----- Qp) = * f, Crop(V).

The Theta r-spin class is a CohFT. However, it is not semisimple.
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The Theta class

Fix r>2,0< a; < r— 1. Consider the moduli space of negative r-th
roofts:

ﬁ1{r

,,,,, n

Define the vector bundle V — ﬁ]g{é] _____ an

and define the r-spin Theta class

®rg,n(al ----- Qp) = * f, Crop(V).

The Theta r-spin class is a CohFT. However, it is not semisimple.

NB: excluding the primary field a = 0 is essential for the CohFT
properties.
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The Theta class

The situation is even worst: the Frobenius mnfld associated to the @' is
nowhere semisimple.

Instead of moving inside the Frobenius mnfld, we can deform the full
Frobenius mnfld structure.

For e € C, define the deformed r-spin Theta class

em
@gi’(o] ,,,,, Gn) = Z ﬁpmv*GZJ,Her(O] ..... Gn,O ..... O)

m=0 m times
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The Theta class

The situation is even worst: the Frobenius mnfld associated to the @' is
nowhere semisimple.

Instead of moving inside the Frobenius mnfld, we can deform the full
Frobenius mnfld structure.

For e € C, define the deformed r-spin Theta class

em
I _ r
Bghlar,..., ap) =) —!pm,*(@g,nm(m ..... an0, ..., 0)
m=0 m times

The deformed Theta r-spin class is well-defined, it forms a CohFT, and
Ognlan,..., an) —OgH(an, ..., an) = Ole) € H=%*8®" (Mg )

Moreover, it is semisimple for e # 0.
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Tautological relations

We can apply Teleman’s result to have an explicit expression of ©"¢,
then take a limit e — 0.
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[e]e]ele] Jo]

Tautological relations

We can apply Teleman’s result to have an explicit expression of ©"¢,
then take a limit e — 0.

Corollary

@@;(01, ..., ap) = explicit expression in terms of V- and k-classes

Moreover, By , is the constant coefficient in e from the above
expression, and all the terms in higher degree vanish in cohomology:

[dege = AIRHS =0

for all d > deg¢ @gm(oh, ..., Op).
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Example: r =2

Notation: @2@,,(1 ..... 1) = ©4,» and similarly for the deformed class.
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Example: r =2

Notation: @29',,(1 ..... 1) = ©4,» and similarly for the deformed class.

Corollary

e 2\2g-2 K1 21 ko K3 2529 k4
Ogn = (—€)? MeXp(*S?*?g*éqg*TE*“-

Moreover, B4, is the constant coefficient in e from the above
expression, and all the terms in higher degree vanish in cohomology:

[dege = AIRHS =0
foralld>2g—2+n. E.g.
3K:]5 — 21Kk +46k3 =0 in Hé(ﬁzo)
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Topological recursion and semisimple CohFTs

Topological recursion is procedure that takes a spectral curve
(Z,x,y: L — C, B) and recursively construct meromorphic
multidifferential forms on X:

(Z,X,y: £ = C,B) — {wgnlar, ... ,z,,)}g'n
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Topological recursion and semisimple CohFTs

Topological recursion is procedure that takes a spectral curve
(Z,x,y: L — C, B) and recursively construct meromorphic
multidifferential forms on X:

(ZX,y: L= C,B) — {wgnlz, ... ,z,,)}g'n

Theorem (Eynard, Dunin-Barkowski-Orantin-Shadrin-Spitz)

There is an explicit correspondence:
topological recursion +—  semisimple CohFTs

The descendant integrals fﬁgn Qgnlan, ..., Qan) H,lpf" are the expansion

coefficients of wgn(z, ..., Z,) in a certain basis. The correspondence
involves asymptotic expansion of exponential integrals.
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Topological recursion and semisimple CohFTs

Topological recursion is procedure that takes a spectral curve
(Z,x,y: L — C, B) and recursively construct meromorphic
multidifferential forms on X:

(ZX,y: L= C,B) — {wgnlz, ... ,z,,)}g'n

Theorem (Eynard, Dunin-Barkowski-Orantin-Shadrin-Spitz)

There is an explicit correspondence:
topological recursion +—  semisimple CohFTs

The descendant integrals fﬁg,n Qgnlan, ..., Qan) H,lpf" are the expansion
coefficients of wgn(z, ..., Z,) in a certain basis. The correspondence
involves asymptotic expansion of exponential integrals.

NB: here we suppose x has only simple critical pnts and y with no poles
at the crifical pnfs.
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Find the spectral curve computing the descendant integrals of @, for

e #0.

Theorem
The spectral curve associated to ©g5, is

1 _ir_ - - dZ]C/ZQ
P xX@=——ez,  y@=-z, B(z1,22)—7(21_22)2-

Moreover, taking the limit e — 0, we obtain the r-Bessel curve which
computes the descendant infegrals of @ .
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eta

Find the spectral curve computing the descendant integrals of @, for

e #0.

Theorem
The spectral curve associated to ©g5, is

az 1 C/ZQ

zr
(21 — )%

P, x(z) = T ez, y(z)=—z"", B(z1,2) =

Moreover, taking the limit e — 0, we obtain the r-Bessel curve which
computes the descendant infegrals of @ .

The exponential integral involved for r =2 is

1 1 1 w2
A e wmaw—1)~ 2k + 1)1yk
u<\/ﬁL1—w ) Z( )

k=0

= exp (3u+ %u2+69u3+¥u"+...).
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W-constraints

Packing the intersection numbers in generating series
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M, an f

we can restate topological recursion on the r-Bessel curve as a
collection of differential operators in the times o, annihilating the
partition function:

Wl,’kz(*”:o i=1,...,r k>2—i
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algebra as differential operators of order 2.
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W-constraints

Packing the intersection numbers in generating series

h29-2 o
70 = = exp ( J ----- ah) Hlpf{/ Tk
! Mon ,

we can restate topological recursion on the r-Bessel curve as a
collection of differential operators in the times o, annihilating the
partition function:

Wl,’kz(*”:o i=1,..., rok>2—i

E.Q. /VVM = %ko while /VVM = L, form a representation of the Virasoro
algebra as differential operators of order 2.

This was formalised by Borot-Bouchard-Chidambaram-Creutzig-
Noshchenko through higher quantum Airy structures. The operators
W, form a representation of the W' (gl,(C)).
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@ If Zis a partition fnctn satisfying
® rth reduction condition:

W, Z=0
® string equation:

VVr,ZfrZ =0
then it must satisfy all W-cnstrnts

WyZ=" =0 i=1,....rnk=2—1
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More on W-constraints

©® The solution to the above W-cnstrnts is unique (up to multiplicative
constant). Thus, any other solution must coincide with 27,

@ If Zis a partition fnctn satisfying
® rth reduction condition:

—

Wy Z=0
® string equation:

Wr,27rZ =0
then it must satisfy all W-cnstrnts

WyZ=" =0 i=1,....rnk=2—1

Find an KP tau-fnctn that is a solution to rth reduction condition (i.e. an
r-KdV tau-fnctn) and the string equation.



The Brézin-Gross-Witten model

The candidate tau-fnct is the higher BGW matrix model:

ZrBOW _ LJ . Tr (ML AM+hNIog (M) aMm.
Cn Jsey

It is easy to show that ZBSW is a KP tau-fnctn satisfying the rth

reduction condition (i.e. an r-KdV tau-fnctn).

r-KdV & BGW model

€00
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The Brézin-Gross-Witten model

The candidate tau-fnct is the higher BGW matrix model:

ZrBewW _ CLJ e * Tr(M,;,’fr]—Ammmog[Mll am.
N Jacy

It is easy to show that ZBSW is a KP tau-fnctn satisfying the rth
reduction condition (i.e. an r-KdV tau-fnctn).

The string equation /\A\/,yz,,Z”BGW =0is hard, since ergfr is of order r.
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The Brézin-Gross-Witten model

The candidate tau-fnct is the higher BGW matrix model:

ZrBewW _ CLJ e * Tr(M,;,’fr]—Ammmog[M)) am.
N Jacy

It is easy to show that ZBSW is a KP tau-fnctn satisfying the rth
reduction condition (i.e. an r-KdV tau-fnctn).

The string equation /\A\/,yz,,Z”BGW =0is hard, since ergfr is of order r.

Proposition
The string equation holds for 728V and z3-8eW,

We failed to find a general strategy.
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Evidence for the conjecture

©® Proved forr=2and 3.
@® We proved the W-cnstrnts
Wy Z®W =0  i=1,...,r k=0.
However, the solution to this smaller set of cnstrnts is not unique.

® The wave fnctn associated to Z8¢W is a solution to the r-Bessel
quantum curve:
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@ How to prove that Z8eW satisfies the string equation?
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to higher spin (positive and negative)?



r-KdV & BGW model

ooe

Questions

@ How to prove that Z8eW satisfies the string equation?
@® Recently, Aggarwal proved the large genus asymptotic

w ., (6g—5+2n)!!
J'ﬁg,n I; £<7~2499!1_[/(2[([_1,_])!!(.l+O(.|))-

Is it possible to prove it using resurgence? Can this be generalised
to higher spin (positive and negative)?

® For r =2, the BGW matrix model can be analysed at the
strong-field phase and at the weak-field phase. We saw that in the
strong-field limit, the BGW integral is generates © descendant
infegrals:

| esowh .
Mg.n

On the other hand, the weak-field limit generates monotone
Hurwitz numbers (Novak). These numbers have an ELSV formula
(Alexandrov-Lewanski-Shadrin), which can be written in terms of
the deformed Theta class at e = 1:

J; @3771 q,‘{l ko,

Mg.n



Thank you for the attention!
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