ReNewQuantum workshop

# The negative Witten *r*-spin conjecture

j/w N.K. Chidambaram, E. Garcia-Failde arXiv: AG/2205.15621

Alessandro Giacchetto

IPhT, Univeristé Paris-Saclay

August 25th, 2022

| Motivation and outline | The class | TR & W-cnstrnts | <i>r-</i> KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| ●0000                  | 000000    | 0000            | 000                       |
| Motivation             |           |                 |                           |



- Started with Witten conjecture/Kontsevich theorem
- Other enumerative problem, e.g. Hurwitz numbers
- Generalised to Virasoro constraints in GW theory
- Involves other theories, e.g. topological recursion, Frobenius mnflds, etc

| Votivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| ⊃●000                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

Theorem (Witten, Kontsevich, Polischuk–Vaintrob, Givental, Adler–van Moerbeke, Faber–Shadrin–Zvonkine)

• WITTEN *r*-SPIN CLASS. For  $r \ge 2$  and  $0 \le a_i < r - 1$ ,

$$W_{g,n}^r(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n})$$

of pure degree, constructed from the moduli space of *r*-th roots and satisfying certain axioms.

• TR AND W-CNSTRNTS. The descendant potential

$$Z^{(r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i,a_i} \int_{\overline{\mathcal{M}}_{g,n}} W^r_{g,n}(a_1,\ldots,a_n) \prod_{i=1}^n \psi^{k_i}_i t_{k_i,a_i}\right)$$

is computed from topological recursion on

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r}$ ,  $y(z) = -z$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ .

Equivalently,  $Z^{(r)}$  is the unique solution to certain W-cnstrnts:

 $W_{i,k}Z^{(r)} = 0, \qquad i = 1, \dots, r, \ k \ge -1.$ 

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW mode |
|------------------------|-----------|-----------------|------------------|
| 00000                  | 000000    | 0000            | 000              |
|                        |           |                 |                  |

Theorem (Witten, Kontsevich, Polischuk–Vaintrob, Givental, Adler–van Moerbeke, Faber–Shadrin–Zvonkine)

• WITTEN *r*-SPIN CLASS. For  $r \ge 2$  and  $0 \le a_i < r - 1$ ,

$$W_{g,n}^r(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n})$$

of pure degree, constructed from the moduli space of *r*-th roots and satisfying certain axioms.

• TR AND W-CNSTRNTS. The descendant potential

$$Z^{(r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i, a_i} \int_{\overline{\mathcal{M}}_{g,n}} W_{g,n}^r(\alpha_1, \ldots, \alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i, a_i}\right)$$

is computed from topological recursion on

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r}$ ,  $y(z) = -z$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ .

Equivalently,  $Z^{(r)}$  is the unique solution to certain W-cnstrnts:

 $W_{i,k}Z^{(r)} = 0, \qquad i = 1, \dots, r, \ k \ge -1.$ 

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW mod |
|------------------------|-----------|-----------------|-------------------------|
| 0●000                  | 000000    | 0000            | <b>0</b> 00             |
|                        |           |                 |                         |

Theorem (Witten, Kontsevich, Polischuk–Vaintrob, Givental, Adler–van Moerbeke, Faber–Shadrin–Zvonkine)

• WITTEN *r*-SPIN CLASS. For  $r \ge 2$  and  $0 \le a_i < r - 1$ ,

$$W_{g,n}^r(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n})$$

of pure degree, constructed from the moduli space of *r*-th roots and satisfying certain axioms.

• TR AND W-CNSTRNTS. The descendant potential

$$Z^{(r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i, a_i} \int_{\overline{\mathcal{M}}_{g,n}} W_{g,n}^r(\alpha_1, \ldots, \alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i, a_i}\right)$$

is computed from topological recursion on

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r}$ ,  $y(z) = -z$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ .

Equivalently,  $Z^{(r)}$  is the unique solution to certain W-cnstrnts:

$$W_{i,k}Z^{(r)} = 0, \qquad i = 1, ..., r, \ k \ge -1.$$

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00●00                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

### Theorem

• *r*-KDV.  $Z^{(r)}$  is the unique tau-fact of the *r*-KdV hierarchy satisfying the string equation  $W_{2,-1}Z^{(r)} = 0$ .

• MATRIX MODELS.  $Z^{(r)}$  coincide with the higher Airy matrix integral:

$$Z^{(r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{r+1}}{r+1} + \Lambda M)} dM$$

• VERLINDE ALGEBRA. The correlators  $W_{0,n}^r$  define an algebra isomorphic to the Verlinde algebra of  $sl_2(\mathbb{C})$  at level r.

• Hyperbolic geometry & JT gravity. For r = 2,

$$W_{g,n}^2(0,\ldots,0) = 1.$$

When coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of Mirzakhani's identity. It has connection with JT gravity.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00●00                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

### Theorem

• *r*-KDV.  $Z^{(r)}$  is the unique tau-factor of the *r*-KdV hierarchy satisfying the string equation  $W_{2,-1}Z^{(r)} = 0$ .

• MATRIX MODELS.  $Z^{(r)}$  coincide with the higher Airy matrix integral:

$$Z^{(r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{r+1}}{r+1} + \Lambda M)} \, dM$$

• VERLINDE ALGEBRA. The correlators  $W_{0,n}^r$  define an algebra isomorphic to the Verlinde algebra of  $sl_2(\mathbb{C})$  at level r.

• Hyperbolic geometry & JT gravity. For r = 2,

$$W_{g,n}^2(0,\ldots,0) = 1.$$

When coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of Mirzakhani's identity. It has connection with JT gravity.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00●00                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

### Theorem

• *r*-KDV.  $Z^{(r)}$  is the unique tau-factor of the *r*-KdV hierarchy satisfying the string equation  $W_{2,-1}Z^{(r)} = 0$ .

• MATRIX MODELS.  $Z^{(r)}$  coincide with the higher Airy matrix integral:

$$Z^{(r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{r+1}}{r+1} + \Lambda M)} \, dM$$

• VERLINDE ALGEBRA. The correlators  $W'_{0,n}$  define an algebra isomorphic to the Verlinde algebra of  $sl_2(\mathbb{C})$  at level r.

• Hyperbolic geometry & JT gravity. For r = 2,

$$W_{g,n}^2(0,\ldots,0) = 1.$$

When coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of Mirzakhani's identity. It has connection with JT gravity.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00●00                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

### Theorem

• *r*-KDV.  $Z^{(r)}$  is the unique tau-fact of the *r*-KdV hierarchy satisfying the string equation  $W_{2,-1}Z^{(r)} = 0$ .

• MATRIX MODELS.  $Z^{(r)}$  coincide with the higher Airy matrix integral:

$$Z^{(r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{r+1}}{r+1} + \Lambda M)} \, dM$$

• VERLINDE ALGEBRA. The correlators  $W'_{0,n}$  define an algebra isomorphic to the Verlinde algebra of  $sl_2(\mathbb{C})$  at level r.

• Hyperbolic geometry & JT gravity. For r = 2,

$$W_{g,n}^2(0,\ldots,0) = 1.$$

When coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of Mirzakhani's identity. It has connection with JT gravity.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 000€0                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

Theorem (CGG)

• THETA *r*-spin class. For  $r \ge 2$  and  $0 < a_i \le r - 1$ ,

 $\Theta_{g,n}^r(a_1,\ldots,a_n) \in H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ 

of pure degree, constructed from the moduli space of negative *r*-th roots and satisfying certain axioms.

• TR AND W-CNSTRNTS. The descendant potential

$$Z^{(-r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i,a_i} \int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^r(\alpha_1,\ldots,\alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i,a_i}\right)$$

is computed from topological recursion on

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r}$ ,  $y(z) = -z^{-1}$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ .

Equivalently,  $Z^{(-r)}$  is the unique solution to certain W-cnstrnts:

$$\widehat{W}_{i,k}Z^{(-r)}=0, \qquad i=1,\ldots,r, \ k\geqslant 2-i.$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 000€0                  | 000000    | 0000            | 000               |
|                        |           |                 |                   |

Theorem (CGG)

• THETA *r*-spin class. For  $r \ge 2$  and  $0 < a_i \le r - 1$ ,

 $\Theta_{g,n}^r(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ 

of pure degree, constructed from the moduli space of negative *r*-th roots and satisfying certain axioms.

• TR AND W-CNSTRNTS. The descendant potential

$$Z^{(-r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i, a_i} \int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^r(\alpha_1, \ldots, \alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i, a_i}\right)$$

is computed from topological recursion on

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r}$ ,  $y(z) = -z^{-1}$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ .

Equivalently,  $Z^{(-r)}$  is the unique solution to certain W-cnstrnts:

$$\widehat{W}_{i,k}Z^{(-r)}=0, \qquad i=1,\ldots,r, \ k \geqslant 2-i.$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 000€0                  | 000000    | 0000            | 000               |
|                        |           |                 |                   |

Theorem (CGG)

• THETA *r*-spin class. For  $r \ge 2$  and  $0 < a_i \le r - 1$ ,

 $\Theta_{g,n}^r(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n})$ 

of pure degree, constructed from the moduli space of negative *r*-th roots and satisfying certain axioms.

• TR AND W-CNSTRNTS. The descendant potential

$$Z^{(-r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i, a_i} \int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^r(\alpha_1, \ldots, \alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i, a_i}\right)$$

is computed from topological recursion on

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r}$ ,  $y(z) = -z^{-1}$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ .

Equivalently,  $Z^{(-r)}$  is the unique solution to certain W-cnstrnts:

$$\widehat{W}_{i,k}Z^{(-r)}=0, \qquad i=1,\ldots,r, \ k \ge 2-i.$$

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 0000●                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

### Conjecture (Proved for r = 2, 3)

• *r*-KDV.  $Z^{(-r)}$  is the unique tau-fact of the *r*-KdV hierarchy satisfying the string equation  $\widehat{W}_{r,2-r}Z^{(-r)} = 0$ .

• MATRIX MODELS.  $Z^{(-r)}$  coincide with the higher Bessel matrix integral (known as the BGW model):

$$Z^{(-r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{-r+1}}{-r+1} - \Lambda M + \hbar N \log(M))} \, dM$$

• SUPER HYPERBOLIC GEOMETRY & SUPER JT GRAVITY. For r = 2,

$$\Theta_{g,n}^2(1,\ldots,1)=\Theta_{g,n}$$

was introduced by Norbury (who conjectured TR, Virasoro cnstrnts, KdV). when coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of super Mirzakhani's identity. It has connection with super JT gravity.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 0000●                  | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

### Conjecture (Proved for r = 2, 3)

• *r*-KDV.  $Z^{(-r)}$  is the unique tau-fact of the *r*-KdV hierarchy satisfying the string equation  $\widehat{W}_{r,2-r}Z^{(-r)} = 0$ .

• MATRIX MODELS.  $Z^{(-r)}$  coincide with the higher Bessel matrix integral (known as the BGW model):

$$Z^{(-r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M-r+1}{-r+1} - \Lambda M + \hbar N \log(M))} dM$$

• SUPER HYPERBOLIC GEOMETRY & SUPER JT GRAVITY. For r = 2,

$$\Theta_{g,n}^2(1,\ldots,1)=\Theta_{g,n}$$

was introduced by Norbury (who conjectured TR, Virasoro cnstrnts, KdV). when coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of super Mirzakhani's identity. It has connection with super JT gravity.

### Conjecture (Proved for r = 2, 3)

• *r*-KDV.  $Z^{(-r)}$  is the unique tau-fact of the *r*-KdV hierarchy satisfying the string equation  $\widehat{W}_{r,2-r}Z^{(-r)} = 0$ .

• MATRIX MODELS.  $Z^{(-r)}$  coincide with the higher Bessel matrix integral (known as the BGW model):

$$Z^{(-r)} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M-r+1}{-r+1} - \Lambda M + \hbar N \log(M))} dM$$

• SUPER HYPERBOLIC GEOMETRY & SUPER JT GRAVITY. For r = 2,

$$\Theta_{g,n}^2(1,\ldots,1) = \Theta_{g,n}$$

was introduced by Norbury (who conjectured TR, Virasoro cnstrnts, KdV). when coupled with  $\exp(2\pi^2\kappa_1)$ , the recursion is a consequence of super Mirzakhani's identity. It has connection with super JT gravity.

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | ●00000    | 0000            | 000               |
|                        |           |                 |                   |

The moduli space of curves

$$\overline{\mathcal{M}}_{g,n} = \left\{ \left. (C, p_1, \dots, p_n) \right| \begin{array}{c} C \text{ cmplx cmpct stbl curve} \\ \text{genus } g \text{ with at worst nodal sing.} \\ p_1, \dots, p_n \text{ marked pnts} \end{array} \right\} /$$

is a cmpct orbifold of  $\dim_{\mathbb{C}} = 3g - 3 + n$ .

• Attaching maps:

$$\begin{array}{l} q \colon \overline{\mathfrak{M}}_{g-1,n+2} \longrightarrow \overline{\mathfrak{M}}_{g,n} \\ r \colon \overline{\mathfrak{M}}_{g_1,n_1+1} \times \overline{\mathfrak{M}}_{g_2,n_2+1} \longrightarrow \overline{\mathfrak{M}}_{g,n} \end{array}$$

• Forgetful maps:

$$\mathcal{P}_m \colon \overline{\mathcal{M}}_{g,n+m} \to \overline{\mathcal{M}}_{g,n}$$

• Natural classes: consider the vector bundle  $\mathbb{L}_i \to \overline{\mathcal{M}}_{g,n}$  with fibres  $\mathbb{L}_i|_{(C,p_1,\dots,p_n)} = T^*_{p_i}C$ . Define

 $\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_{g,n}), \qquad \kappa_m = \mathcal{P}_*(\psi_{n+1}^m) \in H^{2m}(\overline{\mathcal{M}}_{g,n}).$ 

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | ●00000    | 0000            | 000               |
|                        |           |                 |                   |

The moduli space of curves

$$\overline{\mathcal{M}}_{g,n} = \left\{ \left. (C, p_1, \dots, p_n) \right| \begin{array}{c} C \text{ cmplx cmpct stbl curve} \\ \text{genus } g \text{ with at worst nodal sing.} \\ p_1, \dots, p_n \text{ marked pnts} \end{array} \right\} /$$

is a cmpct orbifold of  $\dim_{\mathbb{C}} = 3g - 3 + n$ .

• Attaching maps:

$$\begin{array}{l} q \colon \overline{\mathcal{M}}_{g-1,n+2} \longrightarrow \overline{\mathcal{M}}_{g,n} \\ r \colon \overline{\mathcal{M}}_{g_1,n_1+1} \times \overline{\mathcal{M}}_{g_2,n_2+1} \longrightarrow \overline{\mathcal{M}}_{g,n} \end{array}$$

• Forgetful maps:

$$p_m \colon \overline{\mathcal{M}}_{g,n+m} \to \overline{\mathcal{M}}_{g,n}$$

• Natural classes: consider the vector bundle  $\mathbb{L}_i \to \overline{\mathcal{M}}_{g,n}$  with fibres  $\mathbb{L}_i|_{(C,p_1,\dots,p_n)} = T^*_{p_i}C$ . Define

 $\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_{g,n}), \qquad \kappa_m = \mathcal{P}_*(\psi_{n+1}^m) \in H^{2m}(\overline{\mathcal{M}}_{g,n}).$ 

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | ●00000    | 0000            | 000               |
|                        |           |                 |                   |

The moduli space of curves

$$\overline{\mathcal{M}}_{g,n} = \left\{ \left. (C, p_1, \dots, p_n) \right| \begin{array}{c} C \text{ cmplx cmpct stbl curve} \\ \text{genus } g \text{ with at worst nodal sing.} \\ p_1, \dots, p_n \text{ marked pnts} \end{array} \right\} /$$

is a cmpct orbifold of  $\dim_{\mathbb{C}} = 3g - 3 + n$ .

• Attaching maps:

$$\begin{array}{l} q \colon \overline{\mathcal{M}}_{g-1,n+2} \longrightarrow \overline{\mathcal{M}}_{g,n} \\ r \colon \overline{\mathcal{M}}_{g_1,n_1+1} \times \overline{\mathcal{M}}_{g_2,n_2+1} \longrightarrow \overline{\mathcal{M}}_{g,n} \end{array}$$

• Forgetful maps:

$$p_m \colon \overline{\mathcal{M}}_{g,n+m} \to \overline{\mathcal{M}}_{g,n}$$

• Natural classes: consider the vector bundle  $\mathbb{L}_i \to \overline{\mathcal{M}}_{g,n}$  with fibres  $\mathbb{L}_i|_{(C,p_1,\dots,p_n)} = T^*_{p_i}C$ . Define

 $\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_{g,n}), \qquad \kappa_m = \mathcal{P}_*(\psi_{n+1}^m) \in H^{2m}(\overline{\mathcal{M}}_{g,n}).$ 

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | ●00000    | 0000            | 000                       |
|                        |           |                 |                           |

The moduli space of curves

$$\overline{\mathfrak{M}}_{g,n} = \left\{ \left. (C, p_1, \dots, p_n) \right| \begin{array}{c} C \text{ cmplx cmpct stbl curve} \\ \text{genus } g \text{ with at worst nodal sing.} \\ p_1, \dots, p_n \text{ marked pnts} \end{array} \right\} /$$

is a cmpct orbifold of  $\dim_{\mathbb{C}} = 3g - 3 + n$ .

• Attaching maps:

$$\begin{array}{l} q \colon \overline{\mathfrak{M}}_{g-1,n+2} \longrightarrow \overline{\mathfrak{M}}_{g,n} \\ r \colon \overline{\mathfrak{M}}_{g_1,n_1+1} \times \overline{\mathfrak{M}}_{g_2,n_2+1} \longrightarrow \overline{\mathfrak{M}}_{g,n} \end{array}$$

• Forgetful maps:

$$p_m \colon \overline{\mathcal{M}}_{g,n+m} \to \overline{\mathcal{M}}_{g,n}$$

• Natural classes: consider the vector bundle  $\mathbb{L}_i \to \overline{\mathcal{M}}_{g,n}$  with fibres  $\mathbb{L}_i|_{(C,p_1,\dots,p_n)} = I_{p_i}^*C$ . Define

$$\psi_i = c_1(\mathbb{L}_i) \in H^2(\overline{\mathcal{M}}_{g,n}), \qquad \kappa_m = p_*(\psi_{n+1}^m) \in H^{2m}(\overline{\mathcal{M}}_{g,n}).$$

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 0●0000    | 0000            | 000                       |
|                        |           |                 |                           |

Collection of cohomology classes that behaves well when restricted to the boundary are called cohomological field theories (CohFT).

Let *I* be a finite set (colours/primary fields),  $\eta = (\eta_{i,j})$  a non-degenerate bilinear form on  $V = \text{span}_{\mathbb{Q}}I$ . A CohFT is a collection of cohomology classes

$$\Omega_{g,n}(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n}), \qquad a_i\in I$$

satisfying:

- SYMMETRY under the action of  $S_n$
- RESTRICTION AXIOMS:

$$q^* \Omega_{g,n}(a_1, \dots, a_n) = \sum_{i,j \in I} \eta^{i,j} \Omega_{g-1,n+2}(a_1, \dots, a_n, i, j)$$
  
$$r^* \Omega_{g,n}(a_1, \dots, a_n) = \sum_{i,j \in I} \eta^{i,j} (\Omega_{g_1,n_1+1} \otimes \Omega_{g_2,n_2+1})(a_1, \dots, a_n, i, j)$$

A special class of CohFT, called semisimple, are fully understood.

Theorem (Teleman's reconstruction theorem)

If  $\Omega$  is a semisimple CohFT, then

 $\Omega = \text{explicit}$  expression in terms of  $\psi$ - and  $\kappa$ -classes.

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 0●0000    | 0000            | 000               |
|                        |           |                 |                   |

Collection of cohomology classes that behaves well when restricted to the boundary are called cohomological field theories (CohFT).

Let *I* be a finite set (colours/primary fields),  $\eta = (\eta_{ij})$  a non-degenerate bilinear form on  $V = \text{span}_{\mathbb{Q}}I$ . A CohFT is a collection of cohomology classes

$$\Omega_{g,n}(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n}), \qquad a_i\in I$$

### satisfying:

- SYMMETRY under the action of  $S_n$
- **RESTRICTION AXIOMS**

$$q^* \Omega_{g,n}(a_1, \dots, a_n) = \sum_{i,j \in I} \eta^{i,j} \Omega_{g-1,n+2}(a_1, \dots, a_n, i, j)$$
  
$$r^* \Omega_{g,n}(a_1, \dots, a_n) = \sum_{i,j \in I} \eta^{i,j} (\Omega_{g_1,n_1+1} \otimes \Omega_{g_2,n_2+1})(a_1, \dots, a_n, i, j)$$

A special class of CohFT, called semisimple, are fully understood.

### Theorem (Teleman's reconstruction theorem)

If  $\Omega$  is a semisimple CohFT, then

 $\Omega = \mbox{explicit}$  expression in terms of  $\psi\mbox{-}$  and  $\kappa\mbox{-} \mbox{classes}.$ 

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 0●0000    | 0000            | 000               |
|                        |           |                 |                   |

Collection of cohomology classes that behaves well when restricted to the boundary are called cohomological field theories (CohFT).

Let *I* be a finite set (colours/primary fields),  $\eta = (\eta_{i,j})$  a non-degenerate bilinear form on  $V = \text{span}_{\mathbb{Q}}I$ . A CohFT is a collection of cohomology classes

$$\Omega_{g,n}(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n}), \qquad a_i\in I$$

satisfying:

- SYMMETRY under the action of  $S_n$
- RESTRICTION AXIOMS:

$$q^* \Omega_{g,n}(a_1, ..., a_n) = \sum_{i,j \in I} \eta^{i,j} \Omega_{g-1,n+2}(a_1, ..., a_n, i, j)$$
  
$$r^* \Omega_{g,n}(a_1, ..., a_n) = \sum_{i,j \in I} \eta^{i,j} (\Omega_{g_1,n_1+1} \otimes \Omega_{g_2,n_2+1})(a_1, ..., a_n, i, j)$$

A special class of CohFT, called semisimple, are fully understood.

Theorem (Teleman's reconstruction theorem)

If  $\Omega$  is a semisimple CohFT, then

 $\Omega = \mbox{explicit}$  expression in terms of  $\psi\mbox{-}$  and  $\kappa\mbox{-} \mbox{classes}.$ 

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 0●0000    | 0000            | 000               |
|                        |           |                 |                   |

Collection of cohomology classes that behaves well when restricted to the boundary are called cohomological field theories (CohFT).

Let *I* be a finite set (colours/primary fields),  $\eta = (\eta_{i,j})$  a non-degenerate bilinear form on  $V = \text{span}_{\mathbb{Q}}I$ . A CohFT is a collection of cohomology classes

$$\Omega_{g,n}(a_1,\ldots,a_n)\in H^{\bullet}(\overline{\mathcal{M}}_{g,n}), \qquad a_i\in I$$

satisfying:

- SYMMETRY under the action of  $S_n$
- RESTRICTION AXIOMS:

$$q^* \Omega_{g,n}(a_1, ..., a_n) = \sum_{i,j \in I} \eta^{i,j} \Omega_{g-1,n+2}(a_1, ..., a_n, i, j)$$
  
$$r^* \Omega_{g,n}(a_1, ..., a_n) = \sum_{i,j \in I} \eta^{i,j} (\Omega_{g_1,n_1+1} \otimes \Omega_{g_2,n_2+1})(a_1, ..., a_n, i, j)$$

A special class of CohFT, called semisimple, are fully understood.

### Theorem (Teleman's reconstruction theorem)

If  $\Omega$  is a semisimple CohFT, then

 $\Omega = \mbox{explicit}$  expression in terms of  $\psi\mbox{-}$  and  $\kappa\mbox{-} \mbox{classes}.$ 

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 00●000    | 0000            | 000                       |
|                        |           |                 |                           |

Fix  $r \ge 2, 0 < a_i \le r - 1$ . Consider the moduli space of negative *r*-th roots:

$$\overline{\mathfrak{M}}_{g;\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n}}^{1/r} = \left\{ \left( C, p_{1},\ldots,p_{n},L \right) \mid L^{\otimes -r} \cong \omega_{\log,C}(\sum_{i} a_{i}p_{i}) \right\} / \sim \right.$$

It admits a forgetful map  $f : \overline{\mathcal{M}}_{g;a_1,...,a_n}^{1/r} \to \overline{\mathcal{M}}_{g,n}$ .

Define the vector bundle  $\mathbb{V} \to \overline{\mathfrak{M}}_{g;a_1,...,a_l}^{1/r}$ 

$$\mathbb{V}|_{(C,p_1,\ldots,p_n,L)}=H^1(C,L).$$

and define the *r*-spin Theta class

$$\Theta_{g,n}^r(a_1,\ldots,a_n) = \star f_* C_{top}(\mathbb{V}).$$

#### Theorem

The Theta r-spin class is a CohFT. However, it is not semisimple.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 00●000    | 0000            | 000                       |
|                        |           |                 |                           |

Fix  $r \ge 2, 0 < a_i \le r - 1$ . Consider the moduli space of negative *r*-th roots:

$$\overline{\mathfrak{M}}_{g;\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n}}^{1/r} = \left\{ \left( C, p_{1},\ldots,p_{n},L \right) \mid L^{\otimes -r} \cong \omega_{\log,C}(\sum_{i} a_{i}p_{i}) \right\} / \sim \right.$$

It admits a forgetful map  $f : \overline{\mathcal{M}}_{g; \alpha_1, ..., \alpha_n}^{1/r} \to \overline{\mathcal{M}}_{g, n}$ .

Define the vector bundle  $\mathbb{V} \to \overline{\mathfrak{M}}_{g;a_1,...,a_n}^{1/r}$ 

$$\mathbb{V}|_{(C,p_1,\ldots,p_n,L)}=H^1(C,L).$$

and define the *r*-spin Theta class

$$\Theta_{g,n}^r(a_1,\ldots,a_n) = \star f_*c_{top}(\mathbb{V}).$$

#### Theorem

The Theta r-spin class is a CohFT. However, it is not semisimple.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 00●000    | 0000            | 000                       |
|                        |           |                 |                           |

Fix  $r \ge 2, 0 < a_i \le r - 1$ . Consider the moduli space of negative *r*-th roots:

$$\overline{\mathfrak{M}}_{g;\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n}}^{1/r} = \left\{ \left( C, p_{1},\ldots,p_{n},L \right) \mid L^{\otimes -r} \cong \omega_{\log,C}(\sum_{i} a_{i}p_{i}) \right\} / \sim \right.$$

It admits a forgetful map  $f : \overline{\mathcal{M}}_{g;a_1,...,a_n}^{1/r} \to \overline{\mathcal{M}}_{g,n}$ .

Define the vector bundle  $\mathbb{V} \to \overline{\mathfrak{M}}_{g;a_1,...,a_n}^{1/r}$ 

$$\mathbb{V}|_{(C,p_1,\ldots,p_n,L)}=H^1(C,L).$$

and define the *r*-spin Theta class

$$\Theta_{g,n}^r(a_1,\ldots,a_n) = \star f_*c_{top}(\mathbb{V}).$$

### Theorem

The Theta *r*-spin class is a CohFT. However, it is not semisimple.

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 00●000    | 0000            | 000                       |
|                        |           |                 |                           |

Fix  $r \ge 2, 0 < a_i \le r - 1$ . Consider the moduli space of negative *r*-th roots:

$$\overline{\mathfrak{M}}_{g;\mathfrak{a}_{1},\ldots,\mathfrak{a}_{n}}^{1/r} = \left\{ \left( C, p_{1},\ldots,p_{n},L \right) \mid L^{\otimes -r} \cong \omega_{\log,C}(\sum_{i} a_{i}p_{i}) \right\} / \sim \right.$$

It admits a forgetful map  $f : \overline{\mathcal{M}}_{g; \alpha_1, ..., \alpha_n}^{1/r} \to \overline{\mathcal{M}}_{g, n}$ .

Define the vector bundle  $\mathbb{V} \to \overline{\mathfrak{M}}_{g;a_1,...,a_n}^{1/r}$ 

$$\mathbb{V}|_{(C,p_1,\ldots,p_n,L)}=H^1(C,L).$$

and define the *r*-spin Theta class

$$\Theta_{g,n}^{r}(a_{1},\ldots,a_{n})=\star f_{*}c_{top}(\mathbb{V}).$$

#### Theorem

The Theta *r*-spin class is a CohFT. However, it is not semisimple.

| Notivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
|                        | 000●00    | 0000            | <b>0</b> 00               |
|                        |           |                 |                           |

The situation is even worst: the Frobenius mnfld associated to the  $\Theta^r$  is nowhere semisimple.

#### Idea

Instead of moving inside the Frobenius mnfld, we can deform the full Frobenius mnfld structure.

For  $\varepsilon \in \mathbb{C}$ , define the deformed *r*-spin Theta class

$$\Theta_{g,n}^{r,\epsilon}(\alpha_1,\ldots,\alpha_n) = \sum_{m \ge 0} \frac{\epsilon^m}{m!} p_{m,*} \Theta_{g,n+m}^r(\alpha_1,\ldots,\alpha_n,\underbrace{0,\ldots,0}_{m \text{ times}})$$

#### Theorem

The deformed Theta r-spin class is well-defined, it forms a CohFT, and

$$\Theta_{g,n}^{r,\epsilon}(a_1,\ldots,a_n) - \Theta_{g,n}^{r}(a_1,\ldots,a_n) = O(\epsilon) \in H^{<\deg\Theta^{r}}(\overline{\mathfrak{M}}_{g,n})$$

Moreover, it is semisimple for  $\epsilon \neq 0$ .

| Notivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
|                        | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

The situation is even worst: the Frobenius mnfld associated to the  $\Theta^r$  is nowhere semisimple.

### Idea

Instead of moving inside the Frobenius mnfld, we can deform the full Frobenius mnfld structure.

For  $\epsilon \in \mathbb{C}$ , define the deformed *r*-spin Theta class

$$\Theta_{g,n}^{r,\epsilon}(\alpha_1,\ldots,\alpha_n) = \sum_{m \ge 0} \frac{\epsilon^m}{m!} p_{m,*} \Theta_{g,n+m}^r(\alpha_1,\ldots,\alpha_n,\underbrace{0,\ldots,0}_{m \text{ times}})$$

#### Theorem

The deformed Theta r-spin class is well-defined, it forms a CohFT, and

$$\Theta_{g,n}^{r,\epsilon}(a_1,\ldots,a_n) - \Theta_{g,n}^{r}(a_1,\ldots,a_n) = O(\epsilon) \in H^{<\deg\Theta^{r}}(\overline{\mathfrak{M}}_{g,n})$$

Moreover, it is semisimple for  $\epsilon \neq 0$ .

| Notivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
|                        | 000000    | 0000            | 000                       |
|                        |           |                 |                           |

The situation is even worst: the Frobenius mnfld associated to the  $\Theta^r$  is nowhere semisimple.

### Idea

Instead of moving inside the Frobenius mnfld, we can deform the full Frobenius mnfld structure.

For  $\epsilon \in \mathbb{C}$ , define the deformed *r*-spin Theta class

$$\Theta_{g,n}^{r,\epsilon}(\alpha_1,\ldots,\alpha_n) = \sum_{m \ge 0} \frac{\epsilon^m}{m!} p_{m,*} \Theta_{g,n+m}^r(\alpha_1,\ldots,\alpha_n,\underbrace{0,\ldots,0}_{m \text{ times}})$$

#### Theorem

The deformed Theta r-spin class is well-defined, it forms a CohFT, and

$$\Theta_{g,n}^{r,\epsilon}(a_1,\ldots,a_n) - \Theta_{g,n}^{r}(a_1,\ldots,a_n) = O(\epsilon) \in H^{<\deg\Theta^{r}}(\overline{\mathcal{M}}_{g,n})$$

Moreover, it is semisimple for  $\epsilon \neq 0$ .

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 0000€0    | 0000            | 000               |
| Tautological relations |           |                 |                   |

We can apply Teleman's result to have an explicit expression of  $\Theta^{r,\varepsilon}$  , then take a limit  $\varepsilon\to 0.$ 

#### Corollary

 $\Theta_{q,n}^{r,\epsilon}(a_1,\ldots,a_n) =$ explicit expression in terms of  $\psi$ - and  $\kappa$ -classes

Moreover,  $\Theta_{g,n}^r$  is the constant coefficient in  $\epsilon$  from the above expression, and all the terms in higher degree vanish in cohomology:

$$[\deg_{\mathbb{C}} = d] RHS = 0$$

for all  $d > \deg_{\mathbb{C}} \Theta_{g,n}^r(a_1, \ldots, a_n)$ .

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 0000●0    | 0000            | 000               |
| Tautological relations |           |                 |                   |

We can apply Teleman's result to have an explicit expression of  $\Theta^{r,\varepsilon}$  , then take a limit  $\varepsilon\to 0.$ 

### Corollary

 $\Theta_{q,n}^{r,\epsilon}(a_1,\ldots,a_n) =$ explicit expression in terms of  $\psi$ - and  $\kappa$ -classes

Moreover,  $\Theta_{g,n}^{r}$  is the constant coefficient in  $\epsilon$  from the above expression, and all the terms in higher degree vanish in cohomology:

 $[\deg_{\mathbb{C}} = d] \operatorname{RHS} = 0$ 

for all  $d > \deg_{\mathbb{C}} \Theta_{g,n}^r(a_1, \ldots, a_n)$ .

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 0000€0    | 0000            | 000                       |
| Tautological relations |           |                 |                           |

We can apply Teleman's result to have an explicit expression of  $\Theta^{r,\varepsilon}$  , then take a limit  $\varepsilon\to 0.$ 

### Corollary

 $\Theta_{q,n}^{r,\epsilon}(a_1,\ldots,a_n) =$ explicit expression in terms of  $\psi$ - and  $\kappa$ -classes

Moreover,  $\Theta_{g,n}^r$  is the constant coefficient in  $\epsilon$  from the above expression, and all the terms in higher degree vanish in cohomology:

$$[\mathsf{deg}_{\mathbb{C}} = d] \operatorname{RHS} = 0$$

for all  $d > \deg_{\mathbb{C}} \Theta_{g,n}^r(a_1, \ldots, a_n)$ .

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 00000●    | 0000            | 000               |
| Example: $r = 2$       |           |                 |                   |

Notation:  $\Theta_{g,n}^2(1,...,1) = \Theta_{g,n}$  and similarly for the deformed class.

Corollary

$$\Theta_{g,n}^{\epsilon} = (-\epsilon^2)^{2g-2+n} \exp\left(-3\frac{\kappa_1}{\epsilon^2} - \frac{21}{2}\frac{\kappa_2}{\epsilon^4} - 69\frac{\kappa_3}{\epsilon^6} - \frac{2529}{4}\frac{\kappa_4}{\epsilon^8} + \dots\right)$$

Moreover,  $\Theta_{g,n}$  is the constant coefficient in  $\varepsilon$  from the above expression, and all the terms in higher degree vanish in cohomology:

$$[\deg_{\mathbb{C}} = d] RHS = 0$$

for all d > 2g - 2 + n. E.g.

$$3\kappa_1^3 - 21\kappa_1\kappa_2 + 46\kappa_3 = 0$$
 in  $H^6(\overline{\mathcal{M}}_{2,0})$ 

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 00000●    | 0000            | 000               |
| Example: $r - 2$       |           |                 |                   |

Notation:  $\Theta_{g,n}^2(1,...,1) = \Theta_{g,n}$  and similarly for the deformed class.

Corollary

$$\Theta_{g,n}^{\varepsilon} = (-\varepsilon^2)^{2g-2+n} \exp\left(-3\frac{\kappa_1}{\varepsilon^2} - \frac{21}{2}\frac{\kappa_2}{\varepsilon^4} - 69\frac{\kappa_3}{\varepsilon^6} - \frac{2529}{4}\frac{\kappa_4}{\varepsilon^8} + \dots\right)$$

Moreover,  $\Theta_{g,n}$  is the constant coefficient in  $\epsilon$  from the above expression, and all the terms in higher degree vanish in cohomology:

$$[\mathsf{deg}_{\mathbb{C}}=\textit{d}]\,\mathsf{RHS}=0$$

for all d > 2g - 2 + n. E.g.

$$3\kappa_1^3 - 21\kappa_1\kappa_2 + 46\kappa_3 = 0$$
 in  $H^6(\overline{\mathcal{M}}_{2,0})$ 

| Motivation and outline | The class      | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|----------------|-----------------|---------------------------|
| 00000                  | 000000         | ●000            | 000                       |
| Topological recursion  | and semisimple | CohFTs          |                           |

Topological recursion is procedure that takes a spectral curve  $(\Sigma, x, y: \Sigma \to \mathbb{C}, B)$  and recursively construct meromorphic multidifferential forms on  $\Sigma$ :

$$(\Sigma, X, Y: \Sigma \to \mathbb{C}, B) \longmapsto \{\omega_{g,n}(z_1, \ldots, z_n)\}_{g,n}$$

Theorem (Eynard, Dunin-Barkowski–Orantin–Shadrin–Spitz)

There is an explicit correspondence:

topological recursion  $\longleftrightarrow$  semisimple CohFTs

The descendant integrals  $\int_{\overline{\mathcal{M}}_{g,n}} \Omega_{g,n}(a_1, \ldots, a_n) \prod_i \psi_i^{k_i}$  are the expansion coefficients of  $\omega_{g,n}(z_1, \ldots, z_n)$  in a certain basis. The correspondence involves asymptotic expansion of exponential integrals.

NB: here we suppose x has only simple critical pnts and y with no poles at the critical pnts.

| Motivation and outline | The class      | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|----------------|-----------------|---------------------------|
| 00000                  | 000000         | ●000            | 000                       |
| Topological recursion  | and semisimple | CohFTs          |                           |

Topological recursion is procedure that takes a spectral curve  $(\Sigma, x, y: \Sigma \to \mathbb{C}, B)$  and recursively construct meromorphic multidifferential forms on  $\Sigma$ :

$$(\Sigma, X, Y: \Sigma \to \mathbb{C}, B) \longmapsto \{\omega_{g,n}(z_1, \ldots, z_n)\}_{g,n}$$

Theorem (Eynard, Dunin-Barkowski–Orantin–Shadrin–Spitz)

There is an explicit correspondence:

topological recursion  $\iff$  semisimple CohFTs

The descendant integrals  $\int_{\overline{M}_{g,n}} \Omega_{g,n}(a_1, \ldots, a_n) \prod_i \psi_i^{k_i}$  are the expansion coefficients of  $\omega_{g,n}(z_1, \ldots, z_n)$  in a certain basis. The correspondence involves asymptotic expansion of exponential integrals.

NB: here we suppose x has only simple critical pnts and y with no poles at the critical pnts.

| Motivation and outline | The class      | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|----------------|-----------------|---------------------------|
| 00000                  | 000000         | ●000            | 000                       |
| Topological recursion  | and semisimple | CohFTs          |                           |

Topological recursion is procedure that takes a spectral curve  $(\Sigma, x, y: \Sigma \to \mathbb{C}, B)$  and recursively construct meromorphic multidifferential forms on  $\Sigma$ :

$$(\Sigma, X, Y: \Sigma \to \mathbb{C}, B) \longmapsto \{\omega_{g,n}(z_1, \ldots, z_n)\}_{g,n}$$

Theorem (Eynard, Dunin-Barkowski–Orantin–Shadrin–Spitz)

There is an explicit correspondence:

topological recursion  $\iff$  semisimple CohFTs

The descendant integrals  $\int_{\overline{M}_{g,n}} \Omega_{g,n}(a_1, \ldots, a_n) \prod_i \psi_i^{k_i}$  are the expansion coefficients of  $\omega_{g,n}(z_1, \ldots, z_n)$  in a certain basis. The correspondence involves asymptotic expansion of exponential integrals.

NB: here we suppose x has only simple critical pnts and y with no poles at the critical pnts.

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 0●00            | 000               |
|                        |           |                 |                   |

## TR for the deformed Theta

### Problem

Find the spectral curve computing the descendant integrals of  $\Theta_{g,n}^{r,\varepsilon}$  for  $\varepsilon \neq 0.$ 

#### Theorem

The spectral curve associated to  $\Theta_{g,n}^{r,\epsilon}$  is

$$\mathbb{P}^1$$
,  $X(z) = \frac{z^r}{r} - \varepsilon z$ ,  $Y(z) = -z^{-1}$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ 

Moreover, taking the limit  $\epsilon \to 0$ , we obtain the *r*-Bessel curve which computes the descendant integrals of  $\Theta_{a,n}^r$ .

The exponential integral involved for r = 2 is

$$\frac{1}{u} \left( \frac{1}{\sqrt{2\pi u}} \int_{\gamma} \frac{1}{1 - w} e^{-\frac{w^2}{2u}} dw - 1 \right) \sim \sum_{k \ge 0} (2k + 1)!! u^k$$
$$= \exp\left( 3u + \frac{21}{2}u^2 + 69u^3 + \frac{2529}{4}u^4 + \dots \right)$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 0●00            | 000               |
|                        |           |                 |                   |

## TR for the deformed Theta

### Problem

Find the spectral curve computing the descendant integrals of  $\Theta_{g,n}^{r,\varepsilon}$  for  $\varepsilon \neq 0.$ 

#### Theorem

The spectral curve associated to  $\Theta_{g,n}^{r,\epsilon}$  is

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r} - \varepsilon z$ ,  $y(z) = -z^{-1}$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ 

Moreover, taking the limit  $\epsilon \to 0$ , we obtain the *r*-Bessel curve which computes the descendant integrals of  $\Theta_{q,n}^r$ .

The exponential integral involved for 
$$r = 2$$
 is  

$$\frac{1}{u} \left( \frac{1}{\sqrt{2\pi u}} \int_{\gamma} \frac{1}{1-w} e^{-\frac{w^2}{2u}} dw - 1 \right) \sim \sum_{k \ge 0} (2k+1)!! u^k$$

$$= \exp\left( 3u + \frac{21}{2}u^2 + 69u^3 + \frac{2529}{4}u^4 + \dots \right)$$

## TR for the deformed Theta

#### Problem

Find the spectral curve computing the descendant integrals of  $\Theta_{g,n}^{r,\varepsilon}$  for  $\varepsilon \neq 0.$ 

#### Theorem

The spectral curve associated to  $\Theta_{g,n}^{r,\epsilon}$  is

$$\mathbb{P}^1$$
,  $x(z) = \frac{z^r}{r} - \varepsilon z$ ,  $y(z) = -z^{-1}$ ,  $B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$ 

Moreover, taking the limit  $\epsilon \to 0$ , we obtain the *r*-Bessel curve which computes the descendant integrals of  $\Theta_{q,n}^r$ .

The exponential integral involved for r = 2 is

$$\frac{1}{u} \left( \frac{1}{\sqrt{2\pi u}} \int_{\gamma} \frac{1}{1-w} e^{-\frac{w^2}{2u}} dw - 1 \right) \sim \sum_{k \ge 0} (2k+1)!! u^k$$
$$= \exp\left( 3u + \frac{21}{2}u^2 + 69u^3 + \frac{2529}{4}u^4 + \dots \right).$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 00●0            | 000               |
| W-constraints          |           |                 |                   |

Packing the intersection numbers in generating series

$$Z^{(-r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i,a_j} \int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^r(\alpha_1,\ldots,\alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i,a_i}\right)$$

we can restate topological recursion on the *r*-Bessel curve as a collection of differential operators in the times  $t_{k_i,a_i}$  annihilating the partition function:

 $\widehat{W}_{i,k}Z^{(-r)} = 0 \qquad i = 1, \dots, r, \ k \ge 2 - i.$ 

E.g.  $\widehat{W}_{1,k} = \frac{\partial}{\partial t_{k,0}}$ , while  $\widehat{W}_{2,k} = L_k$  form a representation of the Virasoro algebra as differential operators of order 2.

This was formalised by Borot–Bouchard–Chidambaram–Creutzig– Noshchenko through higher quantum Airy structures. The operators  $\widehat{W}_{l,k}$  form a representation of the  $\mathcal{W}^{1-r}(\mathfrak{gl}_r(\mathbb{C}))$ .

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 00€0            | 000               |
| W-constraints          |           |                 |                   |

Packing the intersection numbers in generating series

$$Z^{(-r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i,a_j} \int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^r(\alpha_1,\ldots,\alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i,a_i}\right)$$

we can restate topological recursion on the *r*-Bessel curve as a collection of differential operators in the times  $t_{k_i,a_i}$  annihilating the partition function:

$$\widehat{W}_{i,k}Z^{(-r)} = 0 \qquad i = 1, \dots, r, \ k \ge 2 - i.$$

E.g.  $\widehat{W}_{1,k} = \frac{\partial}{\partial t_{k,0}}$ , while  $\widehat{W}_{2,k} = L_k$  form a representation of the Virasoro algebra as differential operators of order 2.

This was formalised by Borot–Bouchard–Chidambaram–Creutzig– Noshchenko through higher quantum Airy structures. The operators  $\widehat{W}_{l,k}$  form a representation of the  $\mathcal{W}^{1-r}(\mathfrak{gl}_r(\mathbb{C}))$ .

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 00●0            | 000               |
| W-constraints          |           |                 |                   |

Packing the intersection numbers in generating series

$$Z^{(-r)} = \exp\left(\sum_{g,n} \frac{\hbar^{2g-2}}{n!} \sum_{k_i,a_j} \int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^r(\alpha_1,\ldots,\alpha_n) \prod_{i=1}^n \psi_i^{k_i} t_{k_i,a_i}\right)$$

we can restate topological recursion on the *r*-Bessel curve as a collection of differential operators in the times  $t_{k_i,a_i}$  annihilating the partition function:

$$\widehat{W}_{i,k}Z^{(-r)} = 0 \qquad i = 1, \dots, r, \ k \ge 2 - i.$$

E.g.  $\widehat{W}_{1,k} = \frac{\partial}{\partial t_{k,0}}$ , while  $\widehat{W}_{2,k} = L_k$  form a representation of the Virasoro algebra as differential operators of order 2.

This was formalised by Borot–Bouchard–Chidambaram–Creutzig– Noshchenko through higher quantum Airy structures. The operators  $\widehat{W}_{i,k}$  form a representation of the  $\mathcal{W}^{1-r}(\mathfrak{gl}_r(\mathbb{C}))$ .

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 000●            | 000               |
| More on W-constraint   | ts        |                 |                   |

- The solution to the above W-cnstrnts is unique (up to multiplicative constant). Thus, any other solution must coincide with Z<sup>(-r)</sup>.
- If Z is a partition fnctn satisfying
  - *r*th reduction condition:

$$\widehat{W}_{1,k}Z = 0$$

• string equation:

$$\widehat{W}_{r,2-r}Z=0$$

then it must satisfy all W-cnstrnts

$$\widehat{W}_{i,k}Z^{(-r)} = 0 \qquad i = 1, \dots, r, \ k \ge 2 - i.$$

#### Idea

Find an KP tau-fnctn that is a solution to *r*th reduction condition (i.e. an *r*-KdV tau-fnctn) and the string equation.

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 000●            | 000               |
| More on W-constrain    | ts        |                 |                   |

- The solution to the above W-cnstrnts is unique (up to multiplicative constant). Thus, any other solution must coincide with Z<sup>(-r)</sup>.
- 2 If Z is a partition fnctn satisfying
  - *r*th reduction condition:

$$\widehat{W}_{1,k}Z = 0$$

• string equation:

$$\widehat{W}_{r,2-r}Z=0$$

then it must satisfy all W-cnstrnts

$$\widehat{W}_{i,k}Z^{(-r)}=0 \qquad i=1,\ldots,r, \ k \geq 2-i.$$

#### Idea

Find an KP tau-fnctn that is a solution to *r*th reduction condition (i.e. an *r*-KdV tau-fnctn) and the string equation.

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 000●            | 000               |
| More on W-constrain    | ts        |                 |                   |

- The solution to the above W-cnstrnts is unique (up to multiplicative constant). Thus, any other solution must coincide with  $Z^{(-r)}$ .
- 2 If Z is a partition fnctn satisfying
  - *r*th reduction condition:

$$\widehat{W}_{1,k}Z = 0$$

• string equation:

$$\widehat{W}_{r,2-r}Z=0$$

then it must satisfy all W-cnstrnts

$$\widehat{W}_{i,k}Z^{(-r)}=0 \qquad i=1,\ldots,r, \ k \geq 2-i.$$

### Idea

Find an KP tau-fnctn that is a solution to *r*th reduction condition (i.e. an *r*-KdV tau-fnctn) and the string equation.

| Motivation and outline | The class    | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|--------------|-----------------|-------------------|
| 00000                  | 000000       | 0000            | ○00               |
| The Brézin–Gross–V     | Vitten model |                 |                   |

The candidate tau-fnct is the higher BGW matrix model:

$$Z^{r\text{-}BGW} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{-r+1}}{-r+1} - \Lambda M + \hbar N \log(M))} \, dM.$$

It is easy to show that  $Z^{r-BGW}$  is a KP tau-fnctn satisfying the *r*th reduction condition (i.e. an *r*-KdV tau-fnctn).

The string equation  $\widehat{W}_{r,2-r}Z^{r-BGW} = 0$  is hard, since  $\widehat{W}_{r,2-r}$  is of order r.

Proposition

The string equation holds for  $Z^{2-BGW}$  and  $Z^{3-BGW}$ .

We failed to find a general strategy.

The Brézin–Gross–Witten model

The candidate tau-fnct is the higher BGW matrix model:

$$Z^{r\text{-BGW}} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{-r+1}}{-r+1} - \Lambda M + \hbar N \log(M))} \, dM.$$

It is easy to show that  $Z^{r-BGW}$  is a KP tau-fnctn satisfying the *r*th reduction condition (i.e. an *r*-KdV tau-fnctn).

The string equation  $\widehat{W}_{r,2-r}Z^{r\text{-BGW}} = 0$  is hard, since  $\widehat{W}_{r,2-r}$  is of order r.

Proposition

The string equation holds for  $Z^{2-BGW}$  and  $Z^{3-BGW}$ .

We failed to find a general strategy.

The Brézin–Gross–Witten model

The candidate tau-fnct is the higher BGW matrix model:

$$Z^{r\text{-BGW}} = \frac{1}{C_N} \int_{\mathcal{H}_N} e^{-\frac{1}{\hbar} \operatorname{Tr}(\frac{M^{-r+1}}{-r+1} - \Lambda M + \hbar N \log(M))} \, dM.$$

It is easy to show that  $Z^{r-BGW}$  is a KP tau-fnctn satisfying the *r*th reduction condition (i.e. an *r*-KdV tau-fnctn).

The string equation  $\widehat{W}_{r,2-r}Z^{r\text{-BGW}} = 0$  is hard, since  $\widehat{W}_{r,2-r}$  is of order r.

### Proposition

The string equation holds for  $Z^{2-BGW}$  and  $Z^{3-BGW}$ .

We failed to find a general strategy.

## Evidence for the conjecture

### • Proved for r = 2 and 3.

We proved the W-cnstrnts

$$\widehat{W}_{i,k}Z^{r\text{-}BGW} = 0 \qquad i = 1, \dots, r, \ k \ge 0.$$

However, the solution to this smaller set of cnstrnts is not unique.

The wave fnctn associated to Z<sup>r-BGW</sup> is a solution to the r-Bessel quantum curve:

$$\left((-1)^r r \,\hat{\gamma}^{r-1} \hat{x} \hat{\gamma} - 1\right) \psi(x) = 0.$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 0000            | 0●0               |
|                        |           |                 |                   |

# Evidence for the conjecture

• Proved for r = 2 and 3.

We proved the W-cnstrnts

$$\widehat{W}_{i,k}Z^{r\text{-}BGW}=0 \qquad i=1,\ldots,r, \ k \geq 0.$$

However, the solution to this smaller set of cnstrnts is not unique.

The wave fnctn associated to Z<sup>r-BGW</sup> is a solution to the r-Bessel quantum curve:

$$\left((-1)^r r \,\hat{\gamma}^{r-1} \hat{x} \hat{\gamma} - 1\right) \psi(x) = 0.$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 0000            | 0●0               |
|                        |           |                 |                   |

# Evidence for the conjecture

• Proved for r = 2 and 3.

We proved the W-cnstrnts

$$\widehat{W}_{i,k}Z^{r\text{-}BGW} = 0 \qquad i = 1, \dots, r, \ k \ge 0.$$

However, the solution to this smaller set of cnstrnts is not unique.

The wave fnctn associated to Z<sup>r-BGW</sup> is a solution to the *r*-Bessel quantum curve:

$$\left((-1)^r r \,\hat{\gamma}^{r-1} \hat{x} \hat{\gamma} - 1\right) \psi(x) = 0.$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 0000            | 00●               |
|                        |           |                 |                   |

## Questions

- How to prove that  $Z^{r-BGW}$  satisfies the string equation?
- Recently, Aggarwal proved the large genus asymptotic

 $\int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \sim \frac{(6g - 5 + 2n)!!}{24^g g! \prod_i (2k_i + 1)!!} (1 + o(1)).$ 

Is it possible to prove it using resurgence? Can this be generalised to higher spin (positive and negative)?

(a) For r = 2, the BGW matrix model can be analysed at the strong-field phase and at the weak-field phase. We saw that in the strong-field limit, the BGW integral is generates  $\Theta$  descendant integrals:

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^{\epsilon=0} \psi_1^{k_1} \cdots \psi_n^{k_n}.$$

On the other hand, the weak-field limit generates monotone Hurwitz numbers (Novak). These numbers have an ELSV formula (Alexandrov–Lewański–Shadrin), which can be written in terms of the deformed Theta class at  $\epsilon = 1$ :

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^{\epsilon=1} \psi_1^{k_1} \cdots \psi_n^{k_n}.$$

| Motivation and outline | The class | TR & W-cnstrnts | r-KdV & BGW model |
|------------------------|-----------|-----------------|-------------------|
| 00000                  | 000000    | 0000            | ○○●               |
| Questions              |           |                 |                   |

- How to prove that  $Z^{r-BGW}$  satisfies the string equation?
- Recently, Aggarwal proved the large genus asymptotic

$$\int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \sim \frac{(6g - 5 + 2n)!!}{24^g g! \prod_i (2k_i + 1)!!} (1 + o(1)).$$

Is it possible to prove it using resurgence? Can this be generalised to higher spin (positive and negative)?

(a) For r = 2, the BGW matrix model can be analysed at the strong-field phase and at the weak-field phase. We saw that in the strong-field limit, the BGW integral is generates  $\Theta$  descendant integrals:

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^{\epsilon=0} \psi_1^{k_1} \cdots \psi_n^{k_n}.$$

On the other hand, the weak-field limit generates monotone Hurwitz numbers (Novak). These numbers have an ELSV formula (Alexandrov–Lewański–Shadrin), which can be written in terms of the deformed Theta class at  $\epsilon = 1$ :

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^{\epsilon=1} \psi_1^{k_1} \cdots \psi_n^{k_n}.$$

| Motivation and outline | The class | TR & W-cnstrnts | <i>r</i> -KdV & BGW model |
|------------------------|-----------|-----------------|---------------------------|
| 00000                  | 000000    | 0000            | 00●                       |
| Questions              |           |                 |                           |

- How to prove that  $Z^{r-BGW}$  satisfies the string equation?
- 2 Recently, Aggarwal proved the large genus asymptotic

$$\int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{k_1} \cdots \psi_n^{k_n} \sim \frac{(6g - 5 + 2n)!!}{24^g g! \prod_i (2k_i + 1)!!} (1 + o(1)).$$

Is it possible to prove it using resurgence? Can this be generalised to higher spin (positive and negative)?

S For r = 2, the BGW matrix model can be analysed at the strong-field phase and at the weak-field phase. We saw that in the strong-field limit, the BGW integral is generates Θ descendant integrals:

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^{\epsilon=0} \psi_1^{k_1} \cdots \psi_n^{k_n}.$$

On the other hand, the weak-field limit generates monotone Hurwitz numbers (Novak). These numbers have an ELSV formula (Alexandrov–Lewański–Shadrin), which can be written in terms of the deformed Theta class at  $\epsilon = 1$ :

$$\int_{\overline{\mathcal{M}}_{g,n}} \Theta_{g,n}^{\epsilon=1} \psi_1^{k_1} \cdots \psi_n^{k_n}.$$

# Thank you for the attention!