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Motivation and outline The class TR & W-cnstrnts r-KdV & BGW model

Motivation

Algebraic
geometry

Integrable
systems

• Started with Witten conjecture/Kontsevich theorem

• Other enumerative problem, e.g. Hurwitz numbers

• Generalised to Virasoro constraints in GW theory

• Involves other theories, e.g. topological recursion, Frobenius
mnflds, etc
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The r-spin theorem

Theorem (Witten, Kontsevich, Polischuk–Vaintrob, Givental, Adler–van
Moerbeke, Faber–Shadrin–Zvonkine)

• WITTEN r -SPIN CLASS. For r ⩾ 2 and 0 ⩽ ai < r − 1,

W r
g,n(a1, . . . ,an) ∈ H•(Mg,n)

of pure degree, constructed from the moduli space of r-th roots and
satisfying certain axioms.
• TR AND W -CNSTRNTS. The descendant potential

Z (r) = exp

∑
g,n

 h2g−2

n!

∑
ki ,ai

∫
Mg,n

W r
g,n(a1, . . . ,an)

n∏
i=1

ψ
ki
i tki ,ai


is computed from topological recursion on

P1, x(z) =
z r

r
, y(z) = −z, B(z1, z2) =

dz1dz2

(z1 − z2)
2 .

Equivalently, Z (r) is the unique solution to certain W-cnstrnts:

Wi,kZ (r) = 0, i = 1, . . . , r , k ⩾ −1.
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The r-spin theorem

Theorem

• r -KDV. Z (r) is the unique tau-fnctn of the r-KdV hierarchy satisfying the
string equation W2,−1Z (r) = 0.

• MATRIX MODELS. Z (r) coincide with the higher Airy matrix integral:

Z (r) =
1

CN

∫
HN

e− 1
 h Tr( Mr+1

r+1 +ΛM) dM

• VERLINDE ALGEBRA. The correlators W r
0,n define an algebra isomorphic

to the Verlinde algebra of sl2(C) at level r .

• HYPERBOLIC GEOMETRY & JT GRAVITY. For r = 2,

W 2
g,n(0, . . . , 0) = 1.

When coupled with exp(2π2κ1), the recursion is a consequence of
Mirzakhani’s identity. It has connection with JT gravity.

• · · ·
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The negative side of the story

Theorem (CGG)

• THETA r -SPIN CLASS. For r ⩾ 2 and 0 < ai ⩽ r − 1,

Θr
g,n(a1, . . . ,an) ∈ H•(Mg,n)

of pure degree, constructed from the moduli space of negative r-th
roots and satisfying certain axioms.
• TR AND W -CNSTRNTS. The descendant potential

Z (−r) = exp

∑
g,n

 h2g−2

n!

∑
ki ,ai

∫
Mg,n

Θr
g,n(a1, . . . ,an)

n∏
i=1

ψ
ki
i tki ,ai


is computed from topological recursion on

P1, x(z) =
z r

r
, y(z) = −z−1, B(z1, z2) =

dz1dz2

(z1 − z2)
2 .

Equivalently, Z (−r) is the unique solution to certain W-cnstrnts:

Ŵi,kZ (−r) = 0, i = 1, . . . , r , k ⩾ 2 − i.
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The negative side of the story

Conjecture (Proved for r = 2, 3)

• r -KDV. Z (−r) is the unique tau-fnctn of the r-KdV hierarchy satisfying
the string equation Ŵr ,2−r Z (−r) = 0.

• MATRIX MODELS. Z (−r) coincide with the higher Bessel matrix integral
(known as the BGW model):

Z (−r) =
1

CN

∫
HN

e− 1
 h Tr( M−r+1

−r+1 −ΛM+ hN log(M)) dM

• SUPER HYPERBOLIC GEOMETRY & SUPER JT GRAVITY. For r = 2,

Θ2
g,n(1, . . . , 1) = Θg,n

was introduced by Norbury (who conjectured TR, Virasoro cnstrnts,
KdV). when coupled with exp(2π2κ1), the recursion is a consequence
of super Mirzakhani’s identity. It has connection with super JT gravity.
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The moduli space of curves

The moduli space of curves

Mg,n =

{
(C,p1, . . . ,pn)

∣∣∣∣ C cmplx cmpct stbl curve
genus g with at worst nodal sing.

p1, . . . ,pn marked pnts

}
/ ∼

is a cmpct orbifold of dimC = 3g − 3 + n.

• Attaching maps:

q : Mg−1,n+2 −→Mg,n

r : Mg1,n1+1 ×Mg2,n2+1 −→Mg,n

• Forgetful maps:
pm : Mg,n+m →Mg,n

• Natural classes: consider the vector bundle Li →Mg,n with fibres
Li |(C,p1,...,pn) = T ∗

pi
C. Define

ψi = c1(Li) ∈ H2(Mg,n), κm = p∗(ψ
m
n+1) ∈ H2m(Mg,n).
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More natural classes

Collection of cohomology classes that behaves well when restricted
to the boundary are called cohomological field theories (CohFT).

Let I be a finite set (colours/primary fields), η = (ηi,j) a non-degenerate
bilinear form on V = spanQI. A CohFT is a collection of cohomology
classes

Ωg,n(a1, . . . ,an) ∈ H•(Mg,n), ai ∈ I

satisfying:
• SYMMETRY under the action of Sn
• RESTRICTION AXIOMS:

q∗Ωg,n(a1, . . . ,an) =
∑
i,j∈I

ηi,jΩg−1,n+2(a1, . . . ,an, i, j)

r∗Ωg,n(a1, . . . ,an) =
∑
i,j∈I

ηi,j(Ωg1,n1+1 ⊗Ωg2,n2+1)(a1, . . . ,an, i, j)

A special class of CohFT, called semisimple, are fully understood.

Theorem (Teleman’s reconstruction theorem)

If Ω is a semisimple CohFT, then

Ω = explicit expression in terms of ψ- and κ-classes.
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The Theta class

Fix r ⩾ 2, 0 < ai ⩽ r − 1. Consider the moduli space of negative r-th
roots:

M
1/r
g;a1,...,an

=
{
(C,p1, . . . ,pn, L)

∣∣ L⊗−r ∼= ωlog,C(
∑

i aipi)
}
/ ∼

It admits a forgetful map f : M
1/r
g;a1,...,an

→Mg,n.

Define the vector bundle V →M
1/r
g;a1,...,an

V |(C,p1,...,pn,L) = H1(C, L).

and define the r-spin Theta class

Θr
g,n(a1, . . . ,an) = ⋆ f∗ctop(V ).

Theorem

The Theta r-spin class is a CohFT. However, it is not semisimple.

NB: excluding the primary field a = 0 is essential for the CohFT
properties.
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The Theta class

The situation is even worst: the Frobenius mnfld associated to the Θr is
nowhere semisimple.

Idea

Instead of moving inside the Frobenius mnfld, we can deform the full
Frobenius mnfld structure.

For ϵ ∈ C, define the deformed r-spin Theta class

Θr ,ϵ
g,n(a1, . . . ,an) =

∑
m⩾0

ϵm

m!
pm,∗Θ

r
g,n+m(a1, . . . ,an, 0, . . . , 0︸ ︷︷ ︸

m times

)

Theorem

The deformed Theta r-spin class is well-defined, it forms a CohFT, and

Θr ,ϵ
g,n(a1, . . . ,an) −Θ

r
g,n(a1, . . . ,an) = O(ϵ) ∈ H<degΘr

(Mg,n)

Moreover, it is semisimple for ϵ ̸= 0.
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Tautological relations

We can apply Teleman’s result to have an explicit expression of Θr ,ϵ,
then take a limit ϵ→ 0.

Corollary

Θr ,ϵ
g,n(a1, . . . ,an) = explicit expression in terms of ψ- and κ-classes

Moreover, Θr
g,n is the constant coefficient in ϵ from the above

expression, and all the terms in higher degree vanish in cohomology:

[degC = d]RHS = 0

for all d > degC Θ
r
g,n(a1, . . . ,an).
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Example: r = 2

Notation: Θ2
g,n(1, . . . , 1) = Θg,n and similarly for the deformed class.

Corollary

Θϵ
g,n = (−ϵ2)2g−2+n exp

(
−3
κ1

ϵ2 −
21
2
κ2

ϵ4 − 69
κ3

ϵ6 −
2529

4
κ4

ϵ8 + . . .

)
Moreover, Θg,n is the constant coefficient in ϵ from the above
expression, and all the terms in higher degree vanish in cohomology:

[degC = d]RHS = 0

for all d > 2g − 2 + n. E.g.

3κ3
1 − 21κ1κ2 + 46κ3 = 0 in H6(M2,0)
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Topological recursion and semisimple CohFTs

Topological recursion is procedure that takes a spectral curve
(Σ, x , y : Σ→ C,B) and recursively construct meromorphic
multidifferential forms on Σ:

(Σ, x , y : Σ→ C,B) 7−→
{
ωg,n(z1, . . . , zn)

}
g,n

Theorem (Eynard, Dunin-Barkowski–Orantin–Shadrin–Spitz)

There is an explicit correspondence:

topological recursion ←→ semisimple CohFTs

The descendant integrals
∫
Mg,n

Ωg,n(a1, . . . ,an)
∏

i ψ
ki
i are the expansion

coefficients of ωg,n(z1, . . . , zn) in a certain basis. The correspondence
involves asymptotic expansion of exponential integrals.

NB: here we suppose x has only simple critical pnts and y with no poles
at the critical pnts.
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TR for the deformed Theta

Problem

Find the spectral curve computing the descendant integrals of Θr ,ϵ
g,n for

ϵ ̸= 0.

Theorem

The spectral curve associated to Θr ,ϵ
g,n is

P1, x(z) =
z r

r
− ϵz, y(z) = −z−1, B(z1, z2) =

dz1dz2

(z1 − z2)2 .

Moreover, taking the limit ϵ→ 0, we obtain the r-Bessel curve which
computes the descendant integrals of Θr

g,n.

The exponential integral involved for r = 2 is

1
u

(
1√
2πu

∫
γ

1
1 − w

e− w2
2u dw − 1

)
∼
∑
k⩾0

(2k + 1)!!uk

= exp

(
3u +

21
2

u2 + 69u3 +
2529

4
u4 + . . .

)
.
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W-constraints

Packing the intersection numbers in generating series

Z (−r) = exp

∑
g,n

 h2g−2

n!

∑
ki ,ai

∫
Mg,n

Θr
g,n(a1, . . . ,an)

n∏
i=1

ψ
ki
i tki ,ai


we can restate topological recursion on the r-Bessel curve as a
collection of differential operators in the times tki ,ai annihilating the
partition function:

Ŵi,kZ (−r) = 0 i = 1, . . . , r , k ⩾ 2 − i.

E.g. Ŵ1,k = ∂
∂tk,0

, while Ŵ2,k = Lk form a representation of the Virasoro
algebra as differential operators of order 2.

This was formalised by Borot–Bouchard–Chidambaram–Creutzig–
Noshchenko through higher quantum Airy structures. The operators
Ŵi,k form a representation of the W1−r (glr (C)).
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Ŵi,k form a representation of the W1−r (glr (C)).



Motivation and outline The class TR & W-cnstrnts r-KdV & BGW model

More on W-constraints

1 The solution to the above W-cnstrnts is unique (up to multiplicative
constant). Thus, any other solution must coincide with Z (−r).

2 If Z is a partition fnctn satisfying
• rth reduction condition:

Ŵ1,k Z = 0
• string equation:

Ŵr ,2−r Z = 0

then it must satisfy all W-cnstrnts

Ŵi,kZ (−r) = 0 i = 1, . . . , r , k ⩾ 2 − i.

Idea

Find an KP tau-fnctn that is a solution to rth reduction condition (i.e. an
r-KdV tau-fnctn) and the string equation.
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Ŵ1,k Z = 0
• string equation:
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The Brézin–Gross–Witten model

The candidate tau-fnct is the higher BGW matrix model:

Z r-BGW =
1

CN

∫
HN

e− 1
 h Tr( M−r+1

−r+1 −ΛM+ hN log(M)) dM.

It is easy to show that Z r-BGW is a KP tau-fnctn satisfying the rth
reduction condition (i.e. an r-KdV tau-fnctn).

The string equation Ŵr ,2−r Z r-BGW = 0 is hard, since Ŵr ,2−r is of order r .

Proposition

The string equation holds for Z 2-BGW and Z 3-BGW.

We failed to find a general strategy.
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Proposition

The string equation holds for Z 2-BGW and Z 3-BGW.

We failed to find a general strategy.



Motivation and outline The class TR & W-cnstrnts r-KdV & BGW model
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Evidence for the conjecture

1 Proved for r = 2 and 3.

2 We proved the W-cnstrnts

Ŵi,kZ r-BGW = 0 i = 1, . . . , r , k ⩾ 0.

However, the solution to this smaller set of cnstrnts is not unique.

3 The wave fnctn associated to Z r-BGW is a solution to the r-Bessel
quantum curve: (

(−1)r r ŷ r−1x̂ ŷ − 1
)
ψ(x) = 0.
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Questions

1 How to prove that Z r-BGW satisfies the string equation?

2 Recently, Aggarwal proved the large genus asymptotic∫
Mg,n

ψ
k1
1 · · ·ψ

kn
n ∼

(6g − 5 + 2n)!!
24gg!

∏
i(2ki + 1)!!

(
1 + o(1)

)
.

Is it possible to prove it using resurgence? Can this be generalised
to higher spin (positive and negative)?

3 For r = 2, the BGW matrix model can be analysed at the
strong-field phase and at the weak-field phase. We saw that in the
strong-field limit, the BGW integral is generates Θ descendant
integrals: ∫

Mg,n

Θϵ=0
g,n ψ

k1
1 · · ·ψ

kn
n .

On the other hand, the weak-field limit generates monotone
Hurwitz numbers [Novak]. These numbers have an ELSV formula
[Alexandrov–Lewański–Shadrin], which can be written in terms of
the deformed Theta class at ϵ = 1:∫

Mg,n

Θϵ=1
g,n ψ

k1
1 · · ·ψ

kn
n .
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Thank you for the attention!


	Motivation and outline
	The class
	TR & W-cnstrnts
	r-KdV & BGW model
	

